Аккумуляторные батареи как источники тока

Химические источники тока. Аккумуляторы.

Химические источники тока устройства, вырабатывающие электрическую энергию за счёт прямого преобразования химической энергии окислительно-восстановительных реакций. Первые Х. и. т. созданы в 19 в. (Вольтов столб, 1800; элемент Даниела – Якоби, 1836; Лекланше элемент, 1865, и др.). До 60-х гг. 19 в. Х. и. т. были единственными источниками электроэнергии для питания электрических приборов и для лабораторных исследований. Основу Х. и. т. составляют два электрода (один – содержащий окислитель, другой – восстановитель), контактирующие с электролитом. Между электродами устанавливается разность потенциалов – электродвижущая сила (эдс), соответствующая свободной энергии окислительно-восстановительной реакции. Действие Х. и. т. основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на отрицательном электроде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи (создавая разрядный ток) к положительному электроду, где участвуют в реакции восстановления окислителя.

В зависимости от эксплуатационных особенностей и от электрохимической системы (совокупности реагентов и электролита) Х. и. т. делятся на гальванические элементы (обычно называются просто элементами), которые, как правило, после израсходования реагентов (после разрядки) становятся неработоспособными, и аккумуляторы, в которых реагенты регенерируются при зарядке – пропускании тока от внешнего источника (см. Зарядное устройство). Такое деление условно, т.к. некоторые элементы могут быть частично заряжены. К важным и перспективным Х. и. т. относятся топливные элементы (электрохимические генераторы), способные длительно непрерывно работать за счёт постоянного подвода к электродам новых порций реагентов и отвода продуктов реакции. Конструкция резервных химических источников тока позволяет сохранять их в неактивном состоянии 10-15 лет (см. также Источники тока).

С начала 20 в. производство Х. и. т. непрерывно расширяется в связи с развитием автомобильного транспорта, электротехники, растущим использованием радиоэлектронной и др. аппаратуры с автономным питанием. Промышленность выпускает Х. и. т., в которых преимущественно используются окислители PbO2, NiOOH, MnO2 и др., восстановителями служат Pb, Cd. Zn и др. металлы, а электролитами – водные растворы щелочей, кислот или солей (см., например, Свинцовый аккумулятор).

Основные характеристики ряда Х. и. т. приведены в табл. Лучшие характеристики имеют разрабатываемые Х. и. т. на основе более активных электрохимических систем. Так, в неводных электролитах (органических растворителях, расплавах солей или твёрдых соединениях с ионной проводимостью) в качестве восстановителей можно применять щелочные металлы (см. также Расплавные источники тока). Топливные элементы позволяют использовать энергоёмкие жидкие или газообразные реагенты.

АККУМУЛЯТОРЫ электрические (от лат. accumulator- собиратель, накопитель), хим. источники тока многократного действия. При заряде от внеш. источника электрич. тока в аккумуляторе накапливается энергия, к-рая при разряде вследствие хим. р-ции непосредственно превращ. снова в электрическую и выделяется во внеш. цепь. По принципу работы и осн. элементам конструкции аккумуляторы не отличаются от гальванических элементов, но электродные р-ции, а также суммарная токообразующая р-ция в аккумуляторах обратимы. Поэтому после разряда аккумулятора может быть снова заряжен пропусканием тока в обратном направлении: на положит. электроде при этом образуется окислитель, на отрицательном-восстановитель.

Наиб. распространены свинцовые аккумуляторы, часто наз. также кислотными. Их действие основано на р-ции:

Электролит – р-р H2SO4 с концентрацией 12-24% по массе в разряженном состоянии и 28-40% в заряженном. Напряжение разомкнутой цепи (НРЦ) 1,95-2,15 В. Чаще всего применяют электроды из пасты, содержащей смесь Рb3О4 и РbО с H2SO4 (активная масса); эту пасту намазывают на профилированную сетку-токоотвод из сплава Рb с 2-12% Sb. Электроды формируют, пропуская через р-р электролита зарядный ток в определенном режиме; при этом на одном электроде образуется РbО2, на другом-Рb. Затем электроды отмывают и сушат в условиях, исключающих возможность окисления Рb. Аккумуляторы, собранные из таких электродов, после заливки у потребителя р-ром H2SO4 готовы к эксплуатации без подзаряда (остальные виды аккумуляторов требуют дополнит. заряда). Применяют также панцирные электроды, в к-рых активная масса заключена в перфорированную пластмассовую или тканевую трубку.

Первый свинцовый аккумулятор был создан Г. Планте в 1859. Сейчас более половины мирового произ-ва Рb расходуется на изготовление свинцовых аккумуляторов с единичной емкостью 2-5000 А * ч и уд. энергией 25-40 Вт * ч/кг. Осн. достоинства таких аккумуляторов: относит. дешевизна, пологие разрядная и зарядная кривые, возможность работать в разл. режимах разряда; недостаток – невысокий ресурс работы (число допустимых циклов заряд-разряд для стартерных аккумуляторов 100-300, для тяговых с панцирными электродами 800-1500). В конце заряда на электродах свинцового аккумулятора наблюдается заметное выделение газов, к-рые часто увлекают за собой туман из капель H2SO4. В связи с этим большое внимание уделяется созданию герметизированных свинцовых акуумуляторов.

Щелочные никель-кадмиевые (НКА) и никельжелезные (НЖА) аккумуляторы по распространению занимают второе место после свинцовых. Токообразующая реакция:

где M-Cd или Fe. Электролит-водный р-р КОН, в к-рый иногда вводят LiOH для улучшения работоспособности окисноникелевого электрода. НРЦ составляет 1,30-1,34 В для НКА и 1,37-1,41 В для НЖА (спустя нек-рое время после окончания заряда), уд. энергия 20-35 Вт*ч/кг. Щелочные аккумуляторы имеют, как правило, высокий ресурс – 1-2 тыс. циклов. Электроды м.б. разл. конструкции: ламельные, в к-рых активная масса заключена в плоские коробочки-ламели из перфорированной стальной ленты; спеченные, в к-рых активная масса вводится в поры основы, образуемой при спекании порошкообразного металлич. Ni; прессованные, в к-рых активную массу под давл. 35-60 МПа напрессовывают на стальную основу (толщина пластин 0,8-1,8 мм).

НЖА используют в осн. для изготовления тяговых аккумуляторных батарей большой емкости (до 1200 А * ч). Они дешевле НКА, но характеризуются повыш. саморазрядом из-за коррозии железа в щелочном р-ре; кроме того, у них более низкие значения отдачи по току и по энергии. В НКА не наблюдается коррозии Cd и связанного с ней газовыделения, что обусловливает большую длительность сохранения заряженного состояния и возможность полной герметизации аккумулятора. Герметичные НКА выпускают емкостью от 0,01 до 160 А * ч. Их широко используют как источники электрич. энергии в приборах бытовой техники, ср-вах связи и т.п.

Серебряно-цинковые аккумуляторы со щелочным электролитом имеют высокую уд. энергию (до 130 Вт*ч/кг) и способны разряжаться большими токами, но из-за высокой стоимости серебра нашли применение только в специальных отраслях, напр. в космической технике. Токообразующая р-ция:

При заряде возможно также образование AgO. Поэтому на зарядных и разрядных кривых наблюдаются ступени, соответствующие р-циям с участием Ag2O и AgO. НРЦ 1,60-1,85 В, ресурс не превышает 100-200 циклов.

Попытки замены Ag др. материалами привели к созданию никель-цинковых аккумуляторах, в к-рых используют спеченный или прессованный окисноникелевый электрод от НКА и цинковый электрод от серебряно-цинковых аккумуляторов. Токообразующая р-ция:

НРЦ 1,74-1,78 В, уд. энергия ок. 60 Вт*ч/кг, ресурс ок. 300 циклов. Разрабатываемые варианты этих аккумуляторах предназначены в осн. для электромобилей, но широкому использованию их мешает недостаточный пока ресурс работы.

В никель-водородных аккумуляторах протекает след. токообразующая р-ция:

Выделяющийся при заряде Н2 накапливается под давлением. Поэтому блок с электродами помещают в стальной цилиндр, выдерживающий давления до 10 МПа. НРЦ 1,32-1,36 В, уд. энергия 50-60 Вт*ч/кг, ресурс неск. тысяч циклов. Из-за дороговизны произ-ва такие аккумуляторы применяют пока только в космич. технике.

Среди перспективных конструкций аккумуляторов с неводными электролитами Наиб. интерес представляют серно-натриевые с твердым керамич. электролитом из алюминатов натрия, обладающим проводимостью по ионам Na + . Рабочая т-ра такого аккумулятора 300-350°С. Токообразующая р-ция:

НРЦ 2,08 В. Осн. трудность при разработке: создание технологии изготовления тонких, но достаточно стойких деталей из твердого электролита. Разрабатывают также высокотемпературные сульфид-железо-литиевые аккумуляторы; в них вместо твердого электролита применяют расплав солей, окислителями служат FeS или FeS2. По своим характеристикам эти аккумуляторы близки к серно-натриевым.

Если требуется более высокое напряжение, чем у отдельного аккумулятора, применяют аккумуляторные батареи, состоящие из последовательно включенных аккумуляторов, имеющих общий корпус, выводы и маркировку. Батареи широко применяют в транспортных ср-вах для запуска двигателей, освещения и др. Тяговые батареи используют для силовых установок электрокаров, стационарные большой емкости-для электропитания телефонных сетей, в кач-ве аварийных источников электроэнергии на случай перебоев в электросети (напр., в операционных). Малогабаритные герметичные батареи применяют для питания переносных радиоприемников и др. устройств. Большое внимание уделяется разработке батарей для электромобилей. Мировое произ-во одних лишь стартерных батарей из свинцовых аккумуляторов превышает 100 млн. штук в год.

В отличие от гальванич. элементов аккумуляторы требуют ухода при эксплуатации: их необходимо заряжать, периодически доливать электролит и поддерживать постоянной его концентрацию, проводить тренировочные и контрольные зарядно-разрядные циклы и т.п. Разрабатывают т. наз. малообслуживаемые и необслуживаемые аккумуляторы, уход за которыми упрощен.

Билет 31.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9777 – | 7479 – или читать все.

Источники тока, батареи, аккумуляторы

Радиоприемники или усилители низкой частоты, с работой которых ты будешь знакомиться в ходе прак­тикумов, телевизоры, магнитофоны, звуковоспроизво­дящая аппаратура в кинотеатрах и многие другие ра­диотехнические устройства работают за счет потребле­ния электрической энергии из электроосветительной сети и от батареи гальванических элементов или аккуму­ляторов. Только самые простые Приемники — детектор­ные — не требуют дополнительных источников тока и работают благодаря «вылавливанию» из пространства энергии радиоволн, излучаемой антеннами радиовеща­тельных станций. Но чтобы передатчики этих станций могли излучать радиоволны, они должны непрерывно по­треблять энергию электрического тока. Короче говоря, источник тока является неотъемлемой частью радиотех­нического устройства. Именно поэтому твой первый практикум на пути знакомства с радиотехникой и будет посвящен источникам тока.

Ты, надеюсь, уже знаешь из школьного курса физики или популярной литературы по электротехнике, что различают ток постоянный и ток переменный. При по­стоянном токе носители электрических зарядов (электро­ны) а проводнике, например в отрезке провода, вклю­ченном в электрическую цепь, или в нити лампочки на­каливания, движутся все время в одном направлении. Источниками постоянного тока могут быть, например, батареи 3336Л (их часто по старинке называют КБС) — те, что питают лампочки плоских карманных фонарей.

При переменном же токе электроны в проводнике или в той же нити накала лампочки движутся попере­менно то в одну, то в другую сторону.

В электроосветительной сети, питающей бытовые электроприборы, ламповые или транзисторные приемники и телевизоры, ток изменяет свое направление с частотой 50 Гц (герц — основная единица измерения ча­стоты: 1 Гц — одно полное колебание в секунду). При таком токе электроны в проводнике 50 раз в секунду движутся в одном направлении и столько же раз в об­ратном. В антеннах передатчиков, излучающих энергию радиоволн, частота питающих их переменных токов со­ставляет сотни килогерц (1 кГц =1000 Гц) и даже десят­ки мегагерц (1 МГц=1 000000 Гц или 1000 кГц).

Электрический ток характеризуют напряжением, из­меряемым в вольтах (В), и силой, измеряембй в ампе­рах (А). Измеряют эти основные электрические пара­метры вольтметрами и амперметрами. В электрических цепях приемников и. усилителей протекают токи, чаще всего не превышающие нескольких десятков миллиам­пер (1 мА = 0,001 А). Поэтому для измерения токов ты будешь пользоваться главным образом миллиампермет­ром или даже микроамперметром (1 мкА = 0,001 мА).

Для измерения напряжений, токов, сопротивлений участков цепей радиолюбителям чаще всего нужны аво-метры. Так называют электроизмерительный прибор, совмещающий в себе амперметр, миллиамперметр, вольтметр и омметр. Можно, например, пользоваться авометром «Школьный». Впрочем, авометр может быть и самодельным, о чем ты узнаешь в следующем прак­тикуме.

Для опытов, иллюстрирующих принцип действия и свойства полупроводниковых диодов и транзисторов, для питания твоих первых транзисторных усилителей и приемников потребуются гальванические элементы 332, 343, 373 или батареи, составленные из гальванических элементов, например 3336Л, «Крона» (рис. 1) или акку­муляторная батарея 7Д-0,1 (цифра 7 в обозначении этой батареи говорит о том, что она состбит из семи аккумуляторов). Один свежий гальванический элемент, независимо от его размеров, развивает напряжение 1,5 В (заряженный аккумуляторный элемент — 1,2 В); бата­рея 3336Л — 4,5 В; батарея «Крона» или 7Д-0,1 — 9 В. Эти напряжения элементов и батарей обычно указыва­ются на этикетках-паспортах.

Иногда элементы и батареи характеризуют электро­движущей силой, или сокращенно ЭДС. Это тоже на­пряжение, но развиваемое элементом или батареей без нагрузки, то есть без потребителя тока. При подключении к элементу нагрузки, например лампочки, напря­жение становится меньше, чем ЭДС.

Разобраться в том, как работают источники постоян­ного тока, тебе помогут несколько опытов, проведение которых займет не больше одного вечера. Для опытов потребуются совершенно разряженная и, следовательно, неприродная для дальнейшего применения батарея 3336Л, медная проволока или пластинка Аистовой меди, поваренная (столовая) соль, немного медного купороса в кристаллах и, конечно, вольтметр постоянного тока (авометр) для измерения напряжений опытных эле­ментов. –

Удали с батареи бумажную этикетку и защитный слой бумаги (рис. 2, а) — увидишь три ее элемента. Крайние элементы изолированы от среднего полосками картона, пропитанными парафином. Сверху элементы залиты чер­ной мастикой (смолкой). Осторожно удали ее — уви­дишь угольные стержни с медными контактными кол­пачками на концах, выступающие из цинковых стаканчи­ков. Угольные стержни — это положительные электроды элементов, а цинковые стаканчики — отрицательные.

Как соединены между собой элементы батареи?

Последовательно. Угольные стержни двух элементов соединены отрезками провода с цинковыми стаканчика­ми соседних элементов. К колпачку свободного стержня и свободному стаканчику крайних элементов припаяны жестяные пластинки, являющиеся выводами электродов батареи. Короткая пластинка — вывод положительного электрода, длинная — отрицательного.

На схемах отрицательные электроды элементов или аккумуляторов обозначают короткими, положительные — более длинными черточками, а рядом ставят соответст­вующие им знаки: « — » и « + ». Одиночный гальваниче­ский элемент или аккумулятор, используемые для пита­ния прибора или радиотехнического устройства, на схе­мах обозначают латинской буквой G («же»), а батарею, составленную из элементов или аккумуляторов, буквами GB.

Разрезав соединительные проводнички, отдели один элемент. Осторожно разрежь по длине его цинковый стаканчик (рис. 2, б). Отогнув края, увидишь мешочек, в котором находится угольный электрод. Обрати внимание на студенистую пасту, заполняющую пространство меж­ду мешочком и стенками стаканчика.

Подогрей стаканчик и извлеки из него мешочек с угольным стержнем. Распори мешочек — увидишь чер­ную массу. Очисти от нее угольный стержень.

О назначении угольной массы в мешочке положитель­ного электрода и студенистой пасты, отделяющей мешо­чек от стенок стаканчика отрицательного электрода, узнаешь позже. Сейчас же займись опытами. i

В стакан или стеклянную банку из-под майонеза на­лей чистую воду комнатной температуры и раствори в ней две-три чайные ложки поваренной соли. Опусти в раствор медную пластинку или кусочек медной проволо­ки, сложенной вдвое, и цинковую пластинку, отрезанную от цинкового стаканчика разобранного элемента. У тебя получился простейший источник постоянного тока. Что­бы проверить, действует ли он, подключи к нему вольт­метр, как показано на рис. 3 (на схемах электроизмери­тельные приборы обозначают кружками с буквами РА (измеритель тока) или PU (измеритель напряжения), а выполняемые ими функции — буквами в кружках: V — вольтметр: мА — миллиамперметр: мA — микроампер-метрг и — омметр). Зажим положительного вывода вольтметра должен соединяться с медной пластинкой, зажим отрицательного вывода — с цинковой пластинкой. Между собой пластинки не должны соединяться,

Что показывает вольтметр? Постоянное напряжение около 1В. Не отключая вольтметра, вытащи одну из пластинок из раствора соли — стрелка вольтметра тут же вернется к нулевой отметке на шкале. Опусти пластинку в раствор — вольтметр покажет то же напряжение.

Таким образом элемент действует. Его медная плас­тинка является прложитель-ным электродом, цинко­вая — отрицательным, а раст­вор поваренной соли, в ко­торую погружены пластин­ки, электролитом элемента.

Читайте также:  Автомобильный рынок

Еще один эксперимент. Замени медную пластинку угольным стержнем разоб­ранного элемента батареи 3336Л. Вольтметр тоже бу­дет фиксировать напряже­ние, только, возможно, не­сколько меньшее, чем с электродом из меди, — и в ,этом случае элемент действует, а его цинковая пластин­ка остается отрицательным электродом.

Будет ли лампочка от карманного фонаря, подклю­ченная к такому элементу, гореть?

Нет (проверь, так ли это). Но ток через нить лампоч­ки будет все же идти, в чем можно убедиться, включив последовательно с ней миллиамперметр. Ток этот чрез­вычайно мал — всего 2…3 мА, а чтобы нить лампочки накалить, через нее надо пропускать примерно в 100 раз больший ток.

При погружении цинковой пластинки в раствор пова­ренной соли между ними возникает химическая реакция, в результате которой на цинковой пластинке образуется излишек электронов и она заряжается отрицательно. При этом раствор соли (то есть электролит) и медная пла­стинка по отношению к цинковой заряжаются положи­тельно. В результате между пластинками-электродами элемента возникает напряжение, которое и фиксирует вольтметр. Сам же вольтметр при измерении является как бы нагрузкой элемента, потребляющей небольшой ток.

Если к электродам элемента подключить лампочку накаливания или замкнуть их, то есть соединить между собой, ток потечет внутри элемента, через электролит. При этом внутри элемента начинает интенсивно выделять­ся водород, покрывающий поверхности пластинок слоем пузырьков. Это явление называют поляризацией. Слои пузырьков водорода уменьшают напряжение элемента. Из-за поля­ризации такой элемент не представ­ляет практической ценности, но благодаря своей простоте он инте­ресен как демонстрационное посо­бие.

Практическое применение мо­жет найти другой вариант элемен­та — медно-цинковый (рис. 4). На дно стакана положи круглую плас­тинку, вырезанную из листовой ме­ди, или спираль из голой медной проволоки толщиной 1… 1,5 мм. Это — положительный электрод элемента. На его про­волочный вывод надень резиновую либо поливинилхло-ридную трубочку или оберни его изоляционной лентой. У цинкового стаканчика разобранного тобой сухого эле­мента отрежь донышко, а к оставшемуся незамкнутому цилиндру припаяй отрезки медной проволоки, которые бы удерживали этот электрод в стакане и одновремен­но служили его выводами. Это — отрицательный элект­род элемента.

На медный электрод насыпь горкой 20…30 г медного купороса и осторожно налей в стакан раствор поварен­ной соли, используемый тобой для первого опытного элемента. Через некоторое время часть медного купо­роса растворится и образует в нижней части стакана слой жидкости голубовато-зеленого цвета. После этого опусти в раствор цинковый электрод так, чтобы его ниж­ний конец не доходил до верхней границы раствора мед­ного купороса на 10…12 мм. Закрепи его в таком поло­жении в стакане.

Элемент готов. Чтобы привести его в действие, надо лишь замкнуть его выводы на 10…15 мин. После этого подключи к элементу лампочку от карманного электри­ческого фонаря. Лампочка горит. Нить накала светится, но тускло. Так оно и должно быть: нить накала этой лам­почки рассчитана на напряжение источника тока 2,5 В, а твой элемент развивает напряжение не более 1 В. Из­мерь это напряжение вольтметром. Чтобы лампочка све­тилась ярче, надо сделать три одинаковых элемента и соединить их последовательно. Как работает такой элемент?

Принципиально так же, как и первый опытный Благо­даря химической реакции между цинком и раствором поваренной соли цинк приобретает отрицательный элект­рический заряд. При этом образуются пузырьки водоро­да, которые движутся к положительному электроду, но, не доходя до него, растворяются в толще раствора мед­ного купороса. Поэтому поляризация не наступает, и эле­мент работает устойчиво. Таким образом, раствор медно-ного купороса является здесь деполяризатором.

Один такой элемент, независимо от его размеров, да-jer напряжение около 1 В. А вот сила тока, которую он может развить в электрической цепи, полностью зависит от его размеров: чем больше объем сосуда и площадь поверхностей электродов, тем больше может быть ток, создаваемый элементом в подключенной к нему нагруз­ке. Так, например, если элемент с цинковым электродом диаметром 70…75 мм собрать в пол-литровой стеклян­ной банке, от него можно получить ток до 200. 250 мА (0,2…0,25 А).

Лучше всего для отрицательных электродов подойдет листовой цинк (не путай с оцинкованным железом) тол­щиной 0,8…1 мм. Чем он толще, тем элемент дольше бу­дет служить. Эти электроды крепи на крышках банок, защищающих электролит от пыли и сора. Для раствора поваренной соли используй дистиллированную или дож­девую воду. В зимнее время можно растопить чистый снег.

Элементы нельзя переносить, трясти, иначе слои электролита перемешаются и элементы перестанут да­вать ток. Поэтому элементы собирай и заливай электро­литом в том месте, где они будут стоять неподвижно.

Голубовато-зеленый слой электролита должен быть только в нижней части банки. Не допускай, чтобы его верхняя граница поднималась до цинка, иначе действие элемента ухудшится, а цинк станет быстро разрушаться. Если эта граница подойдет к цинку ближе, чем на б… 10 мм, то подержи электроды замкнутыми накоротко, пока граница не опустится до нужного уровня. Если же она слишком понизится, осторожно брось в элемент не­сколько кристалликов медного купороса.

На поверхность электролита полезно пустить несколь­ко капель растительного или вазелинового масла, кото­рое образует пленку, предотвращающую испарение электролита. Края банки и цинкового электрода, выстулающего над электролитом, а также выводы обоих электродов желательно смазать вазелином или салом.

Вот, собственно, те основные советы, которые надо помнить при сборке и эксплуатации самодельных медно-цинкозых источников постоянного тока.

Вернемся к батарее 3336Л. Разбирая ее элемент, ты, конечно, заметил, что внутренняя поверхность его цинко­вого стаканчика сильно изъедена. В нем даже кое-где есть сквозные отверстия. Догадываешься о причине? Да, ты прав: во время работы элемента цинк, вступая в хи­мическую реакцию с электролитом, расходуется и раз­рушается.

А какова роль черной массы в мешочке, окружаю­щей положительный электрод? Это деполяризатор — спрессованная смесь толченого угля, порошка графита и двуокиси марганца. Студенистая паста, заполняющая пространство между деполяризатором и стенками ста­канчика, — электролит, представляющий собой раствор нашатыря с примесью крахмала или муки.

Во время работы гальванического элемента, а рабо­тает он принципиально так же, как и твои опытные эле­менты, выделяющийся водород соединяется с кислоро­дом, содержащимся в двуокиси марганца, в результате чего поляризация не наступает.

Точно так же устроены и работают элементы 332, 343, 373, только их размеры и запасы энергии иные. Они мо­гут служить до полного разрушения цинка отрицательно­го электрода. Обычно раньше истощается и высыхает электролит, в то время как Цинк еще мог бы порабо­тать. Чтобы убедиться в этом, проведи такой опыт.

У одного из оставшихся элементов разобранной бата­реи удали картонку, закрывающую цинковый стакан­чик. Подключи к электродам элемента вольтметр. Если элемент действительно полностью разряжен, то стрелка вольтметра будет стоять возле нулевой отметки шкалы. Следя за стрелкой прибора, влей в элемент немного чи­стой воды. Уже через несколько секунд вольтметр ста­нет показывать напряжение, постепенно возрастающее почти до 1,5 В. Элемент «оживает»! Через одну-две ми­нуты к нему можно подключить лампочку от круглого карманного фонаря, и ее нить слегка накалится. Значит, элемент может еще поработать.

Так многие радиолюбители продлевают «жизнь», ка­залось бы, совершенно бросовых гальванических эле-

ментов и батарей. Попробуй и ты таким же способом временно восстановить работоспособность отслужившей свой срок батареи 3336Л. Этот опыт тебе пригодится в будущем.

Как устроены и работают аккумуляторы

В широком смысле слова в технике под термином «Аккумулятор» понимается устройство, которое позволяет при одних условиях эксплуатации накапливать определенный вид энергии, а при других — расходовать ее для нужд человека.

Их применяют там, где необходимо собрать энергию за определенное время, а затем использовать ее для совершения больших трудоемких процессов. Например, гидравлические аккумуляторы, используемые в шлюзах, позволяют поднимать корабли на новый уровень русла реки.

Электрические аккумуляторы работают с электроэнергией по этому же принципу: вначале накапливают (аккумулируют) электричество от внешнего источника заряда, а затем отдают его подключенным потребителям для совершения работы. По своей природе они относятся к химическим источникам тока, способным совершать много раз периодические циклы разряда и заряда.

Во время работы постоянно происходят химические реакции между компонентами электродных пластин с заполняющим их веществом — электролитом.

Принципиальную схему устройства аккумулятора можно представить рисунком упрощенного вида, когда в корпус сосуда вставлены две пластины из разнородных металлов с выводами для обеспечения электрических контактов. Между пластинами залит электролит.

Работа аккумулятора при разряде

Когда к электродам подключена нагрузка, например, лампочка, то создается замкнутая электрическая цепь, через которую протекает ток разряда. Он формируется движением электронов в металлических частях и анионов с катионами в электролите.

Этот процесс условно показан на схеме с никель-кадмиевой конструкцией электродов.

Здесь в качестве материала положительного электрода используют окислы никеля с добавками графита, которые повышают электрическую проводимость. Металлом отрицательного электрода работает губчатый кадмий.

Во время разряда частицы активного кислорода из окислов никеля выделяются в электролит и направляются на отрицательные пластины, где окисляют кадмий.

Работа аккумулятора при заряде

При отключенной нагрузке на клеммы пластин подается постоянное (в определенных ситуациях пульсирующее) напряжение большей величины, чем у заряжаемого аккумулятора с той же полярностью, когда плюсовые и минусовые клеммы источника и потребителя совпадают.

Зарядное устройство всегда обладает большей мощностью, которая «подавляет» оставшуюся в аккумуляторе энергию и создает электрический ток с направлением, противоположным разряду. В результате внутренние химические процессы между электродами и электролитом изменяются. Например, на банке с никель кадмиевыми пластинами положительный электрод обогащается кислородом, а отрицательный — восстанавливается до состояния чистого кадмия.

При разряде и заряде аккумулятора происходит изменение химического состава материала пластин (электродов), а электролита не меняется.

Способы соединения аккумуляторов

Величина тока разряда, которую может выдержать одна банка, зависит от многих факторов, но в первую очередь от конструкции, примененных материалов и их габаритов. Чем значительнее площадь пластин у электродов, тем больший ток они могут выдерживать.

Этот принцип используется для параллельного подключения однотипных банок у аккумуляторов при необходимости увеличения тока на нагрузку. Но для заряда такой конструкции потребуется поднимать мощность источника. Этот способ используется редко для готовых конструкций, ведь сейчас намного проще сразу приобрести необходимый аккумулятор. Но им пользуются производители кислотных АКБ, соединяя различные пластины в единые блоки.

В зависимости от применяемых материалов, между двумя электродными пластинами распространенных в быту аккумуляторов может быть выработано напряжение 1,2/1,5 или 2,0 вольта. (На самом деле этот диапазон значительно шире.) Для многих электрических приборов его явно недостаточно. Поэтому однотипные аккумуляторы подключают последовательно, причем это часто делают в едином корпусе.

Примером подобной конструкции служит широко распространенная автомобильная разработка на основе серной кислоты и свинцовых пластин-электродов.

Обычно в народе, особенно среди водителей транспорта, принято называть аккумулятором любое устройство, независимо от количества его составных элементов — банок. Однако, это не совсем правильно. Собранная из нескольких последовательно подключенных банок конструкция является уже батареей, за которой закрепилось сокращенное название «АКБ» . Ее внутреннее устройство показано на рисунке.

Любая из банок состоит из двух блоков с набором пластин для положительного и отрицательного электродов. Блоки входят друг в друга без металлического контакта с возможностью надежной гальванической связи через электролит.

При этом контактные пластины имеют дополнительную решетку и отдалены между собой разделительной пластиной — сепаратором.

Соединение пластин в блоки увеличивает их рабочую площадь, снижает общее удельное сопротивление всей конструкции, позволяет повышать мощность подключаемой нагрузки.

С внешней стороны корпуса такая АКБ имеет элементы, показанные на рисунке ниже.

Из него видно, что прочный пластмассовый корпус закрыт герметично крышкой и сверху оборудован двумя клеммами (обычно конусной формы) для подключения к электрической схеме автомобиля. На их выводах выбита маркировка полярности: «+» и «-». Как правило, для блокировки ошибок при подключении диаметр положительной клеммы немного больше, чем у отрицательной.

У обслуживаемых аккумуляторных батарей сверху каждой банки размещена заливная горловина для контроля уровня электролита или доливки дистиллированной воды при эксплуатации. В нее вворачиваются пробка, которая предохраняет внутренние полости банки от попадания загрязнений и одновременно не дает выливаться электролиту при наклонах АКБ.

Поскольку при мощном заряде возможно бурное выделение газов из электролита (а этот процесс возможен при интенсивной езде), то в пробках делаются отверстия для предотвращения повышения давления внутри банки. Через них выходят кислород и водород, а также пары электролита. Подобные ситуации, связанные с чрезмерными токами заряда, желательно избегать.

На этом же рисунке показано соединение элементов между банками и расположение пластин-электродов.

Стартерные автомобильные АКБ (свинцово-кислотные) работают по принципу двойной сульфатации. На них во время разряда/заряда происходит электрохимический процесс, сопровождающийся изменением химического состава активной массы электродов с выделением/поглощением в электролит (серную кислоту) воды.

Этим объясняется повышение удельной плотности электролита при заряде и снижение при разряде батареи. Другими словами, величина плотности позволяет оценивать электрическое состояние АКБ. Для ее замера используют специальный прибор — автомобильный ареометр.

Входящая в состав электролита кислотных батарей дистиллированная вода при отрицательной температуре переходит в твердое состояние — лед. Поэтому, чтобы автомобильные аккумуляторы не замерзали в холодное время, необходимо применять специальные меры, предусмотренные правилами эксплуатации.

Какие существуют типы аккумуляторов

Современное производство для различных целей выпускает более трех десятков разнообразных по составу электродов и электролиту изделий. Только на основе лития работает 12 известных моделей.

В качестве металла электродов могут встретиться:

Химические источники тока

Обозначение на схеме и устройство химических источников тока

К химическим источникам тока причисляют гальванические элементы и аккумуляторы. Есть и другие химические источники тока, но они менее распространены. В обиходе гальванический элемент получил название батарейка. Это не совсем верное определение, так как батарейкой можно назвать несколько отдельных гальванических элементов соединённых вместе – это и есть батарея питания или батарейка.

На принципиальных схемах гальванический элемент обозначается так.

Так обозначают один гальванический элемент или один элемент аккумулятора.

Но поскольку номинальное напряжение на одном гальваническом элементе обычно не более 1,5 вольта, их соединяют в батареи питания. Батарея питания на принципиальной схеме обозначается вот так.

Здесь показано, что батарея питания состоит из двух отдельных гальванических элементов. Общее напряжение на полюсах этой составной батареи – 3 вольта из расчёта, что каждый из элементов имеет на полюсах напряжение 1,5 вольта. Также на схемах можно встретить и такое обозначение.

Это тоже условное изображение батареи питания или батарейки на принципиальной схеме, только здесь не уточняется, сколько именно гальванических элементов используется в батарее, а указано лишь общее напряжение на полюсах батареи.

Одиночный аккумуляторный элемент обозначается на схемах так же, как и отдельный гальванический элемент. Номинальное напряжение одного аккумуляторного элемента обычно составляет около 1,25 вольт. Чтобы получить аккумулятор с большим напряжением аккумуляторные элементы соединяют вместе – получается аккумуляторная батарея или просто аккумулятор. Обозначение аккумуляторной батареи на схемах такое же, как и батареи, составленной из гальванических элементов.

Чем гальванический элемент отличается от аккумулятора?

Дело в том, что гальванический элемент сам является источником постоянного тока, который образуется за счёт необратимой химической реакции. Гальванический элемент причисляют к первичным источникам тока.

Аккумулятор является так называемым вторичным источником тока. Почему? Потому, что перед тем, как использовать аккумулятор, его нужно предварительно зарядить от источника постоянного тока – зарядника. Только после полной зарядки аккумулятор сможет питать электронное устройство. Отличительным качеством аккумуляторов является то, что их можно заряжать и разряжать много раз. В отличие от аккумулятора, гальваническая батарея питания после своего полного разряда не может быть использована повторно.

Читайте также:  Автомобиль без водителя

Какие существуют батарейки?

Наибольшее распространение в настоящее время получили щелочные батареи питания. Их ещё называют алкалиновыми – производное от английского слова alkaline – «щелочь».

Работа щелочной батарейки основана на окислительно-восстановительной химической реакции между цинком и диоксидом марганца. Результатом, а точнее полезным продуктом этой реакции является электрический постоянный ток и тепло, которое не используется. Электрическая ёмкость щелочной батарейки составлет около 1700 – 3000 мАч. По величине своей ёмкости, щелочные батарейки лидируют по сравнению с солевыми батарейками, электроёмкость которых меньше и составляет 550 – 1100 мАч.

Щелочная батарейка устроена следующим образом. Взглянем на рисунок.

Корпусом элемента является никелированный стальной стакан. Он же является плюсовым контактом батарейки « +». Активная масса представляет собой смесь диоксида марганца (MnO2) и графита. Анодная паста – это смесь порошка цинка (Zn) и густого щелочного электролита. Электролитом обычно служит раствор гидроксида калия (KOH). Анодная паста отделена от активной массы сепаратором. Сепаратор разделяет реагенты, исключая их перемешивание и нейтрализацию заряда. Также сепаратор пропитан электролитом.

Отрицательный потенциал снимается с латунного стержня, который окружён анодной пастой. Стальная тарелка контактирует с латунным стержнем – токосъёмником и является отрицательным контактом элемента «».

Прокладка изолирует никелированный стальной стакан от стальной тарелки, препятствуя тем самым короткому замыканию. Кроме этого прокладка сдерживает давление газа, который в незначительном количестве образуется при химической реакции. В толще прокладки имеется защитный клапан или по-другому предохранительная мембрана. Защитный клапан служат для того, чтобы при чрезмерном давлении газа сработать и выпустить его наружу. Это предотвращает взрыв щелочного элемента, но и приводит к его разгерметизации. Как правило, разгерметизация приводит к течи электролита.

Иногда, забыв вынуть уже подсевшие батарейки, через некоторое время можно обнаружить, что в батарейном отсеке появилась какая-то жидкость. Это и есть потёкший электролит. Он может вызвать коррозию контактов. Поэтому на упаковке с батарейками можно найти предупреждение о том, что севшие элементы нужно вынимать из электроприборов. Теперь вы знаете, зачем это нужно делать.
Итак, с устройством разобрались, теперь поговорим о том, как работает щелочной элемент.

Как работает щелочной элемент.

Для начала, маленькое отступление…
Как вы заметили, почему то анодная паста соединяется с помощью токосъёмника с отрицательным контактом элемента – стальной тарелкой. А ведь анод – это « +». Получается нестыковочка…

В чём тут дело? А дело в том, что в электронике есть один каламбур. По умолчанию, за направление тока в электрической цепи считается направление от плюса (анода) к минусу (катоду) – так повелось ещё с тех времён, когда электроника ещё зарождалась.

Но ведь электрический ток, как известно, это упорядоченное движение электронов, которые имеют отрицательный заряд. И поэтому, ток течёт оттуда, где есть избыток электронов, в направлении, где есть нехватка отрицательных зарядов (это и есть плюс – недостаток электронов). При этом получается, что ток течёт в реальности от отрицательного контакта к положительному. Именно поэтому образуется эта нестыковка, которая порой вводит начинающих радиолюбителей в ступор.

В электрохимии анодом принято считать тот электрод, на котором происходит процесс окисления. Так вот в щелочной батарейке (и не только) на аноде в результате окисления образуется избыток электронов. То есть по сути – это катод, «минус». Но, как уже говорилось, в электрохимии всё наоборот. Итак, электроны вырабатываются анодной пастой – смесью цинкового порошка (Zn) и густого электролита (раствора KOH).

Катодом же считается электрод, где происходит реакция восстановления. Далее электроны, которые были получены в результате реакции окисления, проходят по электрической цепи электронного прибора, и возвращаются опять в батарейку, но уже на катод, где эти электроны используются для восстановительной химической реакции. Катод – это диоксид марганца. Токоприёмником катода служит никелированный стальной стакан, который контактирует с активной массой – диоксидом марганца (MnO2).

Вот такая игра в наоборот. Напомню ещё раз, что в электронике за направление тока в цепи считается направление от плюса-«анода» к минусу-«катоду». В электрохимии всё наоборот. С этим и связаны особенности в названии реагентов химического источника тока.

Можно ли заряжать батарейки?

Также часто можно слышать вопрос: «Можно ли заряжать батарейки?» Ответим: «Лучше не стоит». Дело в том, что для вырабатывания электрической энергии в батарейках используется необратимая химическая реакция. Поэтому батарейка и является первичным источникам тока.

А вот в аккумуляторах используется обратимая химическая реакция, которая позволяет заряжать и разряжать их множество раз. Поэтому аккумуляторы и называют вторичными источниками тока.

Несмотря на это, известно, что щелочные элементы допускают перезарядку, т.е. их можно зарядить и использовать повторно. Но такие, перезаряжаемые щелочные элементы имеют свою особую конструкцию. Также стоит отметить, что даже такие элементы нельзя перезаряжать много раз, обычно не более 25. В широкой продаже такие щелочные элементы не встречаются. Их маркируют как Rechargeable Alkaline Manganese.

Из всего этого следует, что заряжать обычные щелочные батарейки категорически не стоит. Такие эксперименты могут завершиться взрывом батарейки и разбрызгиванием электролита. А это не есть гуд +опасно для здоровья .

Чтобы замедлить химическую реакцию в щелочном элементе и, тем самым, продлить срок её хранения и снизить саморазряд батареи, в них раньше добавляли кадмий и ртуть. Эти вещества замедляли химическую реакцию, и цинк окислялся медленнее. Но, из-за токсичности ртути и кадмия их сейчас не используют, а применяют другие, менее вредные ингибиторы.

На многих батарейках можно даже увидеть надпись – 0% кадмия и ртути или 0% Hg & Cd. Это своеобразный маркетинговый ход, как бы намекающий на то, что данные батарейки безопасны.

Если вы с успехом дошли до этих строк, то теперь вас можно поздравить, ведь теперь вы знаете, как устроена и работает щелочная батарейка. И поэтому её и не обязательно разбирать . Кроме щелочных элементов питания существуют и другие, но об их устройстве мы расскажем в другой раз.

Источники тока (аккумуляторные батареи)

Элемент Вольта как первый источник тока, после изобретения электрофорной машины. Источники электрической энергии. Химические источники тока, их принцип действия, состав, классификация. Аккумуляторы, их электрические и эксплуатационные характеристики.

РубрикаПроизводство и технологии
Видреферат
Языкрусский
Дата добавления06.03.2009
Размер файла19,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Источники тока (аккумуляторные батареи)

Именно гальванические элементы позволили начать изучение электричества. В первой половине XIX века они являлись единственными источниками электрической энергии. До их появления были известны только законы электростатики, не существовало понятия электрического тока и его проявлений.


Химическими источниками тока называются устройства, в которых свободная энергия пространственно разделенного окислительно-восстановительного процесса, протекающего между активными веществами, превращается в электрическую энергию.


После создания принципиально нового источника энергии – электромагнитного генератора – химические источники тока потеряли свое первостепенное значение. Генераторы превзошли своих предшественников по экономическим и техническим параметрам, но ХИТ продолжали совершенствоваться и развиваться как автономные источники для средств связи.


Примечателен тот факт, что при одновременном включении всех ХИТ, находящихся в эксплуатации, можно получить мощность, соизмеримую с суммарной мощностью всех электростанций мира.


Утилизация отработавших срок службы ХИТ вызвала определенные экологические проблемы. В производстве ХИТ используются ртуть, кадмий, сурьма и другие токсичные химические элементы. Сбор и переработка большого количества источников тока затруднительна. Это послужило причиной для поиска новых материалов и разработки источников тока, свободных от токсичных элементов.


Принцип действия

Основу химических источников тока составляют два электрода (катод, содержащий окислитель и анод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

§ в качестве восстановителя (на аноде) — свинец Pb, кадмий Cd, цинк Zn и другие металлы;

§ в качестве окислителя (на катоде) — оксид свинца(IV) PbO2, гидрооксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;

§ в качестве электролита — растворы щелочей, кислот или солей.

Классификация

По возможности или невозможности повторного использования химические источники тока делятся на:

§ гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций, невозможно перезарядить;

§ электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;

§ топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются перезарядке, но эффективность этого процесса крайне низка.

По типу используемого электролита химические источники тока делятся на кислотные (например свинцово-кислотный аккумулятор, свинцово-плавиковый элемент), щелочные (например ртутно-кадмиевый элемент, никель-цинковый аккумулятор) и солевые (например, марганцево-магниевый элемент, цинк-хлорный аккумулятор).

Некоторые виды химических источников тока:

Гальванические элементы

· Медно-окисный гальванический элемент

Аккумуляторы


· Лантан-фторидный аккумулятор


· Литий-ионный аккумулятор


· Литий-полимерный аккумулятор


· Марганцево-оловянный элемент


· Никель-цинковый аккумулятор


· Никель-кадмиевый аккумулятор


· Никель-металл-гидридный аккумулятор


· Свинцово-кислотный аккумулятор


· Свинцово-оловянный аккумулятор


· Серебряно-цинковый аккумулятор


· Серебряно-кадмиевый аккумулятор


· железо-никелевый аккумулятор


· железо-воздушный аккумулятор


· цинк-воздушный аккумулятор


· цинк-хлорный аккумулятор


· натрий-серный аккумулятор


· литий-хлорный аккумулятор


· свинцово-водородный аккумулятор


· Цинк-бромный аккумулятор


· Натрий-Никель-Хлоридный аккумулятор


· Литий-железо-сульфидный аккумулятор


· Литий-фторный аккумулятор


Топливные элементы


· Прямой метанольный топливный элемент


· Твердооксидный топливный элемент


· Щелочной топливный элемент


Аккумуляторами называются химические источники тока, предназначенные для многократного использования их активных веществ, регенерируемых путем заряда.


Из разработанных за последние десятилетия новых химических источников тока наибольший интерес для самых различных отраслей науки и техники представляют серебряно-цинковые аккумуляторы.


Благодаря высокому разрядному напряжению, большой энергоемкости активных масс, а также достаточно хорошей электропроводности активной массы положительного электрода, возрастающей в процессе разряда, они обладают удельными характеристиками в 4 – 5 большими, чем кислотные или щелочные аккумуляторы. Рост электропроводности позволяет проводить разряды источника тока очень интенсивными режимами.

Электрический аккумулятор — химический источник тока многоразового действия. Электрические аккумуляторы используются для накопления энергии и автономного питания различных потребителей.

Принцип действия аккумулятора основан на обратимости химической реакции. Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием тока в направлении, обратном направлению тока при разряде. Несколько аккумуляторов, объединенных в одну электрическую цепь, называют Аккумуля?торная батаре?я. Заряд аккумуляторов обычно измеряют в ампер-часах.

Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:

свинцово-кислотные (Lead Acid)

автомобили, аварийное электроснабжение, источники бесперебойного питания

замена стандартного гальванического элемента

замена стандартного гальванического элемента, электромобили

мобильные устройства, электромобили

По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо?льшим напряжением при ограничении тока. Стандартным считается зарядный ток в 1/10 номинальной емкости аккумулятора. Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эскплуатации, например NiMH аккумуляторы чувствительны к перезаряду, литиевые — к перезаряду, напряжению и температуре. NiCd и NiMH аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости, в случае когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд даже не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться Капельная подзарядка

В настоящее время серебряно-цинковые аккумуляторы находят довольно широкое применение в науке и технике, а также в военном деле.

Они применяются в управляемых снарядах и ракетах, в торпедах, для различной переносной аппаратуры и т. п.

В качестве примера экономии веса при использовании серебряно-цинковых аккумуляторов вместо кислотных в иностранной литературе приводятся данные о том, что на одном из проектировавшихся снарядов предполагалась установка серебряно-цинковой аккумуляторной батареи весом 33,1 кг. Вместо свинцово кислотной батареи весом 106,5 кг.

Конструкция серебряно-цинковых аккумуляторов существенно отличается от конструкции обычных щелочных или кислотных аккумуляторов. В серебряно-цинковых аккумуляторов положительные пластины изготавливаются из чистого тем или иным способом приготовленного серебра, а отрицательные – из окиси цинка в смеси с порошком металлического цинка. Положительные пластины отделены от отрицательных несколькими слоями гидратцелюлозной пленки, применение которой обусловлено тем, что через неё, с одной стороны хорошо диффундирует электролит, а с другой стороны она препятствует миграции коллоидных частиц окислов серебра от положительного электрода к отрицательному и произрастанию дендритов цинка в противоположном направлении.

Собранный пакет электродов помещается в пластмассовый сосуд и заливается химически чистой калиевой щелочью. Размеры электродов и сосудов подбираются таким образом, чтобы при заполнении аккумулятора электролитом электроды испытывали соответствующее боковое давление, обеспечивающее механическую устойчивость, предупреждающую осыпание активной массы электродов. Кроме того, при наличии бокового давления отпадает необходимость использования каких-либо жестких решёток и стоек, как это делается у обычных кислотных аккумуляторов.

Другие типы аккумуляторов.

Лантан-фторидный аккумулятор — Очень мощный химический источник тока с твёрдым электролитом. Анод — металлический лантан, электролит фторид лантана-фторид бария, катод фторид висмута или фторид свинца.

Ёмкость на единицу объёма свыше 1330 Вт·ч/дм 3 , энергия свыше 290–350 Вт·ч/кг.

Параметры

§ Теоретическая энергоёмкость: 750 Вт·ч/кг.


§ Удельная энергоёмкость(Вт·час/кг): около — до 350 Вт·ч/кг.


§ Удельная энергоплотность(Вт·час/дм3): около – 1330 Вт·ч/дм 3 .


§ Рабочая температура:

Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора широко распространенный в современной бытовой электронной технике. В настоящее время это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки. Литий-ионные аккумуляторы обладают одним из лучших соотношений веса и запасенной энергии, у них нет эффекта памяти и они медленно теряют заряд при отсутствии электрической нагрузки. Более совершенная конструкция литий-ионного аккумулятора называется литий-полимерным аккумулятором. Первый литий-ионный аккумулятор разработала корпорация Sony в 1991 году.

Недостатки

Li-Ion аккумуляторы могут быть опасны при разрушении корпуса аккумулятора, и при неаккуратном обращении могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Попытки заряда таких аккумуляторов могут повлечь за собой взрыв. Храниться Li-Ion-аккумуляторы должны в полностью заряженном состоянии.

Никель-цинковый аккумулятор — это химический источник тока, в котором анодом является цинк, электролит гидроксид калия с добавкой гидроксида лития, а катодом — оксид никеля.

Достоинства: большая энергоёмкость и напряжение наибольшее из щёлочных аккумуляторов.

Недостатки: небольшой ресурс (250-370 циклов заряд-разряд).

Параметры

§ Теоретическая энергоёмкость:


§ Удельная энергоёмкость(Вт·ч/кг): около – 60 Вт·ч/кг.


§ Удельная энергоплотность: около – до 255 Вт·ч/дм 3 .


§ ЭДС: 1,78 В.


§ Рабочая температура: -30…+40 °С.

Железо-никелевый аккумулятор — это вторичный химический источник тока, в котором железо анод, электролит водный раствор гидроксида натрия или калия (с добавками гидроксида лития), катод — гидрат окиси никеля.

§ Удельная энергоемкость(Вт·ч/кг): около — 35–50 Вт·ч/кг.

§ Рабочая температура: -20 +30 °С.

Подобные документы

Изучение устройства электрических схем, применяемых источников тока для инициирования зарядов взрывчатого вещества. Назначение, область применения, основные узлы и техническая характеристика источников тока. Отработка приемов работы с взрывной машиной.

методичка [300,5 K], добавлен 30.04.2014

Универсальные характеристики двигателя тока смешанного возбуждения. Определение скорости и режима его работы при заданных нагрузках. Механические характеристики двигателя постоянного тока последовательного возбуждения при торможении противовключением.

контрольная работа [167,7 K], добавлен 09.04.2009

Основы теории обработки результатов измерений. Влияние корреляции на суммарную погрешность измерения тока косвенным методом, путём прямых измерений напряжения и силы тока. Алгоритм расчёта суммарной погрешности потребляемой мощности переменного тока.

курсовая работа [132,9 K], добавлен 17.03.2015

Общее описание устройства дуговой электропечи переменного тока. Шихтовые материалы для печей переменного тока. Дуговые печи постоянного тока и их преимущество. Регуляторы электрического режима при плавке в ДСП. Основные тенденции развития дуговых печей.

курсовая работа [325,4 K], добавлен 17.04.2011

Требования к конструктивной компоновке контактора: получение уравновешенной подвижной системы без дополнительных противовесов, доступ к контактным соединениям, высокая износостойкость опор якоря. Конструкции контакторов постоянного и переменного тока.

практическая работа [76,3 K], добавлен 12.01.2010

Принцип действия электрической машины. Расчёт и анализ характеристик работы тягового двигателя (ТЭД) в режиме тяги. Особенности взаимосвязи тока якоря и частоты его вращения. Электродвижущая сила, индуцированная в обмотке якоря при номинальном режиме.

курсовая работа [885,6 K], добавлен 14.11.2011

Условия получения сварного шва высокого качества. Устройства для регулирования сварочного тока. Сварочные аппараты переменного тока. Сварка батареи отопления из труб. Материал детали и его свойства. Разработка технологического процесса сборки и сварки.

дипломная работа [1,3 M], добавлен 02.11.2009

Функциональная схема электропривода. Расчёт параметров силовой цепи электропривода и запаса по напряжению. Оценка влияния внутренней обратной связи по ЭДС на процессы, протекающие в контуре тока. Исследование динамических процессов в контуре тока якоря.

курсовая работа [1,9 M], добавлен 03.05.2009

Разработка системы плавного пуска двигателя постоянного тока на базе микроконтроллера. Выбор широтно-импульсного преобразователя. Разработка системы управления транзистором и изготовление печатной платы. Статические и энергетические характеристики.

курсовая работа [1,5 M], добавлен 29.04.2009

История создания и виды электродвигателя. Принцип работы и устройство синхронного электродвигателя переменного тока. Изучение работы генератора на основе закона электромагнитной индукции Фарадея. Изучение характеристики простейшего электрогенератора.

презентация [497,9 K], добавлен 12.10.2015

Аккумуляторные батареи как источники тока

    Главная
  • Список секций
  • Химия
  • Батарейка как химический источник тока: энергетические характеристики и влияние на окружающую среду

Батарейка как химический источник тока: энергетические характеристики и влияние на окружающую среду

Автор работы награжден дипломом победителя III степени

В современной жизни с батарейками мы сталкиваемся ежедневно – в пульте дистанционного управления телевизором, в электронных часах, в детских игрушках и карманных фонариках. Как-то в очередной раз, покупая батарейки для бытовых предметов дома, я задумался над вопросом: а какие батарейки будут более эффективными и долговечными: солевые или щелочные? Решил, что приобрету оба типа батареек. Дома обратил внимание на значок, изображенный на корпусе батарейки, в виде перечеркнутого мусорного бака. Выходит, что батарейку нельзя выбрасывать в мусорное ведро. Что же тогда с ней делать? И какая из батареек – солевая или щелочная нанесет меньший вред окружающей среде?

Проблема: какие батарейки обладают лучшими энергетическими характеристиками и наносят меньший вред окружающей среде?

Предмет исследования: энергетические характеристики солевых и щелочных пальчиковых батареек, а также их влияние на окружающую среду при неправильной утилизации.

Объект исследования: пальчиковые батарейки (солевые и щелочные).

Цель работы: сравнить энергетические характеристики солевых и щелочных батареек, а также оценить вред от неправильной утилизации химических источников тока и проинформировать одноклассников и знакомых о правилах использования батареек.

Для достижения поставленной цели сформулированы следующие задачи:

Расширить и углубить знания о химических источниках тока, их химическом составе и принципе работы.

Определить экспериментально энергетические характеристики батареек с помощью специальных приборов.

Осуществить химические эксперименты по оценке влияния химических источников тока на окружающую среду.

Сформулировать выводы о том, какая из батареек является более энергетически и экономически более выгодной. А также отметить, какой вред наносят химические источники тока окружающей среде.

Сформулировать практические рекомендации по правильной утилизации химических элементов питания.

Актуальность исследовательской работы.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Поэтому будет весьма полезным отметить для себя и всех окружающих, какой из двух типов батареек (солевые и щелочные) более энергетически и экономически выгодный.

К сожалению, в современном мире далеко не все знают, как утилизировать отработанные батарейки, и какой вред они могут нанести человеку и окружающей его среде.

Методы исследования, используемые в работе.

Теоретические: проведен обзор литературы с целью изучения понятия «химический источник тока», принципа работы и химического состава солевых и щелочных батареек, а также влияния химических элементов питания на окружающую среду и здоровье человека.

Эмпирические: с помощью мультиметра DT832 и устройства заряда-разряда IMAX B6 экспериментально определены энергетические характеристики солевых и щелочных батареек. В условиях школьной лаборатории проведены химические эксперименты, подтверждающие негативное влияние химических источников тока на окружающую среду.

Практическая значимость состоит в возможности применения данной исследовательской работы при выборе батареек для бытовых приборов дома, а также с целью составления рекомендация по использованию и утилизации батареек.

1. Теоретическая часть

1.1 Батарейки как химический источник тока

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был элемент Вольта – сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенных проволокой. Затем учёный собрал батарею из этих элементов, которая была названа Вольтовым столбом.

В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца (IV) MnO2 с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств [3].

Химический источник тока — это устройство, непосредственно преобразующее энергию химической реакции, протекающей между анодом и катодом, в электрическую энергию. Все химические источники по способности к повторному использованию подразделятся на две большие группы: первичные источники тока и вторичные источники тока. Первичные источники тока обеспечивают только разряд и не могут заряжаться — они используются однократно. К ним и относятся солевые и щелочные батарейки. Вторичные источники тока (аккумуляторы) могут заряжаться и использоваться многократно в циклическом режиме «заряд-разряд» [7].

Химические источники тока состоят из электродов и электролита, который находится в емкости. Электрод, на котором окисляется восстановитель (отдает свои электроны), называется анодом. Электрод, на котором восстанавливается окислитель (принимает электроны), называется катодом. В итоге получается электрохимическая система.

Результатом протекающей в системе электрохимической реакции становится возникновение тока. Восстановитель передает электроны на окислитель, который восстанавливается. Электролит, находящийся между электродами, нужен для прохождения реакции.

Анод, как правило, изготавливается из порошкового цинка ( Zn ) с латунным сердечником, выведенным на дно батарейки, то есть к минусу. Катод выполнен из порошкового диоксида марганца ( MnO 2 ), с добавлением угольного порошка (С). Угольный порошок способствует лучшей проводимости.

Важно знать, что любой гальванический элемент выдаёт строго постоянный ток, так как он всегда направлен от плюса к минусу и не имеет синусоиды изменений [12].

К основным характеристикам батареек как химических источников тока относятся: разрядное напряжение ( это установленное нормативами значение напряжения, до которого допускается его снижение при разряде батареи током определенной величины) ; мощность; разрядный ток ( значение тока, при разряде которым при нормальной температуре определяют емкость батарейки) ; емкость – то количество энергии, которое источник выдает при общем разряде; температурный интервал работы; время службы – наибольший срок хранения и работы батарейки; механическая прочность; герметичность.

Основное достоинство батареек как химических источников тока состоит в отсутствии обслуживания. Это значит, что перед эксплуатацией их необходимо просто осмотреть и определить срок годности. При включении в цепь нельзя путать полярность и допускать повреждения контактов [10].

1.2 Устройство и характеристики солевых и щелочных батареек

1.2.1 Солевые батарейки

К наиболее распространенным автономным химическим источникам тока относятся солевые батарейки, которые также имеют название марганцево-цинковые и угольно-цинковые . При их изготовлении используется пассивный уголь (С) и двуокись марганца ( MnO 2 ).

Отличительной чертой таких батареек является состав электролита, в качестве которого применяются неорганические соли: хлористый аммоний ( NH 4 Cl ) или хлористый цинк ( ZnCl 2) [11]. Заявленное напряжение солевой батарейки — 1,5v (Вольта).

Корпус такого элемента питания состоит из цинка и выступает в качестве отрицательного электрода. Положительным элементом служит брикет прессованной активной массы, смоченный электролитом. Для герметизации и экранирования токоотвода в верхней его части применяют обжимы и прокладки.

Избежать протекания электролита, коррозийных и окислительных процессов удается с помощью плотного футляра-корпуса , в который и помещаются все элементы солевой батарейки.Дополнительно корпус (стакан) снабжается этикеткой, где публикуется наиболее важная информация о химическом источнике тока [1].

Следует отметить, что химический состав электролита солевых
батареек может немного варьироваться – в “мощной” версии используется
электролит с преобладанием хлорида цинка ( ZnCl 2) . Впрочем, слово “мощный”
применительно к ним можно писать разве что в кавычках – ни одна из
разновидностей солевых батареек на серьёзную нагрузку не
рассчитана: в фонаре их хватит на четверть часа, а в фотоаппарате может
не хватить даже на выдвижение объектива. Следовательно, назначение солевых батареек – это пульты дистанционного управления, часы, электронные термометры, то есть устройства, энергопотребление которых укладывается в единицы, в крайнем случае, в десятки миллиампер.

1.2.1 Щелочные батарейки

Рис. 4 Устройство щелочной батарейки

аботы над улучшением потребительских свойств первичных источников тока привели в шестидесятых годах 20 века к началу производства щелочных батареек. Название этот вид батареек получил по веществу электролитаконцентрированному щелочному раствору. Для производства электролита используется гидроксид калия ( KOH ), реже гидроксид натрия ( NaOH ). Сегодня щелочные батарейки часто называют алкалиновыми из-за надписи на корпусе батареек, выпущенных за рубежом “Alkaline” (щелочь). Другие участники электрохимической реакции в щелочной батарейке такие же, как и у солевой батарейки – отрицательный электрод из цинка ( Zn ) и положительный электрод из оксида марганца ( MnO 2). Применение в качестве электролита раствора щелочи вместо раствора соли позволяет значительно улучшить эксплуатационные свойства батареек. Напряжение щелочных батареек составляет 1,5v (Вольта) [13].

Во время электрохимической реакции электролит (щелочь) расходуется очень незначительно, поэтому его требуется меньше, чем при производстве солевой батарейки.

Отрицательный электрод представляет собой цинковый порошок, занимающий 20-30% объема, а не стакан как у солевой батарейки. Конструкция батарейки дает возможность значительно увеличить срок службы и повысить максимальный ток, отдаваемый в нагрузку.

Отрицательный электрод, расположенный в центральной части батарейки, представляет собой пасту из цинкового порошка, электролита и загустителя. Для предотвращения коррозии применяется цинк высокой чистоты, имеющий специальные добавки других металлов (алюминий и висмут). Что позволяет отказаться от применения ртути. Внутри порошка находится латунный стержень, выполняющий функцию токоотвода.

В щелочной батарейке находится в полтора раза больше оксида марганца, чем в солевой батарейке. Отсутствие выделения газов при электрохимической реакции в щелочной батарейке позволяет делать ее корпус герметичным. В нижней части корпуса расположен защитный клапан, защищающий батарейку от взрыва. Если при прохождении химических процессов или из-за нагрева внутри будут накапливаться газы, то откроется защитный клапан и часть электролита выйдет наружу, герметичность будет нарушена [9].

Щелочные элементы питания могут работать в жестких погодных условиях. Температура их хранения и эксплуатации находится в интервале от -20 до +50°С. Хотя некоторые производители пишут более широкие рамки.

Алкалиновые химические источники питания можно использовать для работы следующих приборов и устройств: кухонных и напольных весов, дистанционных пультов управления, часов настенных и напольных, детских игрушек, медицинских приборов (тонометров, термометров), радиоприемников, портативных колонок и многих других приборов.

1.3 Влияние химических источников тока на окружающую среду

Взглянув на обычную пальчиковую батарейку, можно увидеть на ней значок в виде перечёркнутого мусорного бака, который означает, что её нельзя выбрасывать вместе с остальными бытовыми отходами в мусорное ведро, а необходимо сдать в специализированный пункт утилизации. И этот знак на батарейке стоит неспроста!

В химических источниках тока содержится множество различных металлов и их соединений (литий, марганец, цинк и др.), а также органических соединений (бумага, картон, крахмал, графит) , которые имеют свойство накапливаться в тканях животных и человека и наносить непоправимый вред здоровью. Всего лишь одна выброшенная пальчиковая батарейка создаёт опасное для жизни загрязнение земли площадью 20 квадратных метров и отравляет 400 литров воды [5].

Чем же опасны находящиеся в батарейках тяжёлые металлы и как они могут попасть в наш организм?

На полигонах бытовых отходов химические источники тока становятся опасными сразу после вскрытия – повреждения оболочки источника тока. Как правило, это происходит в течение 6–7 недель, поскольку на батарейки воздействует повышенная температура и кислый (с рН меньше 7) фильтрат полигона. На протяжении всего времени существования полигона ТБО фильтрат служит постоянным источником загрязнения подземных вод.

Корпус отработанных и выброшенных батареек под воздействием окружающей среды разрушается и содержащиеся в ней химические вещества, обладающие ядовитыми свойствами, попадают в почву и грунтовые воды. Из почвы и воды эти вещества поглощаются растениями и животными, а из них (в виде пищи) оказываются в нашем организме. Губительный эффект может стать очевидным для человека через несколько лет, вызвав хроническое отравление, раковые заболевания или генетические мутации [8].

Таким образом, можно сделать вывод, что одновременно с огромной пользой, которую нам приносят батарейки, они являются одним из самых опасных источников ухудшения экологической обстановки, загрязнения окружающей среды, что связано с масштабами их применения. Из всего объема производимых батареек в мире перерабатывается всего 3%, при этом прослеживается неоднородность этого показателя по странам мира.

В России процесс организации сбора отработанных химических источников тока идет очень медленными темпами, и даже имеет тенденцию к замедлению [2].

В связи с тем, что утилизация батареек необходима для сохранения окружающей среды и здоровья будущего поколения и является глобальной экологической проблемой, необходимо ее реализовать государством в рамках полномочий субъекта РФ и муниципального района.

2. Экспериментальная часть

2.1 Экспериментальное исследование энергетических характеристик солевых и щелочных батареек

Для того чтобы установить, какая из батареек (солевая или щелочная) является более эффективной и энергетически выгодной, мы решили экспериментально определить некоторые из характеристик этих химических источников тока (разрядное напряжение, максимальный ток и емкость) [3]. При проведении экспериментов использовались следующие приборы:

1. Цифровой мультиметр DT 832. Универсальный прибор, который совмещает в себе вольтметр, амперметр, омметр. Разрешающая способность – 0,1 V (Вольт).

2. Устройство заряда-разряда IMAXB 6.

Результаты экспериментального определения основных характеристики солевых и щелочных батареек представлены в таблице 1.

Табл. 1 Экспериментально определенные характеристики солевых и щелочных элементов питания разных фирм производителей (с указанием стоимости)

Характеристики химического источника тока

Ссылка на основную публикацию