Измерение отверстий

Контрольно-измерительные инструменты. Выбор средств измерений

1. Выбор средств измерений и их применение

Выбор средств измерений при проверке точности деталей – один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

  • допустимую погрешность измерительного прибора–инструмента;
  • цену деления шкалы;
  • порог чувствительности;
  • пределы измерения, массу, габаритные размеры, рабочую нагрузку и др.

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее – до 20% допуска на изготовление изделия.

2. Контрольно-измерительные инструменты

К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка – штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.

Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.

Рис. 2. Методы измерения размеров штангенциркулем

Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).

Рис. 3. Установка нониуса: А – на размер 0,6 мм; Б – на размер 7 мм; В – на размер 7,4 мм

Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).

Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги – основной шкалы (например 7,4 мм на рис. 3, В).

Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.

Штангенрейсмасы предназначаются для точной разметки и измерения высот от плоских поверхностей.

Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.

Рис 4. Штангенрейсмас

Шкала и нониус такие же, как и у других штангенинструментов.

Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.

После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.

При разметке размер устанавливается по шкалам нониуса и штанги заранее. Риска на детали прочерчивается острым концом ножки при перемещении штангенрейсмаса по плите. При измерении с помощью игл (рис. 4, в) необходимо от показания штангенрейсмаса М вычесть величину m, которая соответствует такому положению рамки 2, когда острие иглы находится в одной плоскости с плоскостью основания .

Индикаторы часового типа. Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.

При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.

Практика измерений. Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.

Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б – на универсальном штативе; в – различные способы крепления индикаторной головки на штативе

При измерениях применяют универсальный штатив и другие приспособления.

Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.

При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.

При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.

Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).

Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах

Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.

Рис. 7. Микрометр для наружных измерений: 1 – пятка; 2 – микрометрический винт; 3 – стопорная гайка; 4 – втулка; 5 – барабан; 6 – трещотка; 7 – скоба

Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.

На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.

При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров – по верхней шкале втулки, а сотые доли миллиметра – по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.

Примеры отсчета по шкалам микрометра приведены на рис. 8.

Рис. 8. Методика отсчета размеров по шкале микрометрического инструмента: а – 11,0 мм; б – 9,36 мм; в – 10,5 мм; г – 9,86 мм

Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.

Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.

Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.

При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.

При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.

Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.

Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).

Рис. 9. Набор щупов

Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.

Поверочные плиты (рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.

Читайте также:  Как ухаживать за автомобилем

На поверхности плит не должно быть коррозийных пятен или раковин.

Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)

Рис. 10. Поверочные плиты

Поверочные линейки стальные. Отклонения от плоскостности и прямолинейности (отклонения формы плоских поверхностей) контролируют с помощью поверочных линеек (рис. 11). Поверочные линейки выпускают лекальные с двусторонним скосом (рис. 11, а); трехгранные (рис. 11, б) и четырехгранные (рис. 11, в); с широкой рабочей поверхностью (прямоугольного сечения (рис. 11, г) и двутаврового сечения (рис. 11, д), “чугунные мостики” (рис. 11, е).

Рис. 11. Поверочные линейки

Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.

Поверочные линейки изготовляют длиной: лекальные – до 500 мм, “чугунные мостики” – до 2500 мм и более. Лекальные применяют для контроля прямолинейности поверхности детали “на просвет”, а поверочные линейки “чугунные мостики” – применяют для проверки прямолинейности “на краску”, с помощью щупа или папиросной бумажки.

При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.

Рис. 12. Схема контроля отклонения от плоскостности лекальной линейкой “на просвет”: а – визуально; б – с образцом просветов

Измерение отклонений от прямолинейности лекальными линейками “на просвет” требует навыка от исполнителя. Для выработки навыка оценивать на глаз по величине просвета величину отклонения от прямолинейности применяют образец просветов (рис. 12, б), который состоит из лекальной линейки 1, комплекта из четырех концевых мер длины с градацией 1 мкм, двух одинаковых концевых мер длины (2) и стеклянной пластины 3. При измерении между концевыми мерами длины и ребром линейки образуются “просветы”, окрашенные в разные цвета вследствие дифракции видимого света и от величины зазора между линейкой и концевой мерой длины.

Виды и типы нутромеров

Нутромер – это прецизионный инструмент для определения размеров пазов, отверстий и внутренних поверхностей изделий методами абсолютного или относительного измерения. При определении диаметра принцип работы прибора сходен с радиусометром, но позволяет производить замеры в труднодоступных местах.

Измерение внутренних размеров отверстий – процедура более сложная, чем измерение наружных параметров деталей. Наибольшие трудности возникают при измерении точных отверстий малого диаметра, длинных отверстий и отклонений формы отверстий. Поэтому средства и методы измерений внутренних размеров имеют опре­деленные особенности. При измерении наружных размеров при­бор находится вне детали, при измерении внутренних размеров или целиком прибор, или его измерительные наконечники должны быть внутри измеряемой детали. Это в большинстве случаев при­водит к более сложной конструкции приборов для внутренних измерений, тем более, что требуется дополнительный механизм или преобразователь для превращения перемещения измерительных наконечников в показания отсчетного устрой­ства, располагаемого в удобном для наблюдения месте. При измерении отверстий измеряемая поверхность имеет вогну­тую форму. Это предопределяет форму и радиус измерительных наконечников (обычно сферическую с радиусом, существенно меньшим радиуса отверстия). При измерении внутренних разме­ров обычно требуются более сложные действия для совмещения линии измерения с диаметром отверстия как в плоскости, прохо­дящей через ось отверстия, так и в перпендикулярной плоскости. Из-за этого при внутренних измерениях возникают дополнитель­ные погрешности, снижающие точность измерения.

Приборы для измерения внутренних отверстий могут быть как ручными, так и стационарными.Для цеховых и лабораторных измерений применяют нутромеры, которых всего существует 4 вида, предназначенные для выполнения различных задач:

Нутромер индикаторный НИ – предназначен для измерения внутренних размеров относительным методом. В нутромерах моделей НИ-10 и НИ-18 величина перемещения подвижного измерительного стержня передается на отсчетное устройство при помощи клиновой передачи, а в нутромерах НИ-50 – НИ-450 – посредством рычажной передачи. В моделях НИ-700 и НИ-1000 подвижный измерительный стержень контактирует непосредственно с отсчетным устройством. Для совмещения лини иизмерения с осевой плоскостью измеряемого отверстия нутромеры снабжены центрирующим мостиком (нутромер НИ-10 может не иметь центрирующего мостика). Настройка нутромера на требуемый размер может производиться как по аттестованным кольцам,так и по блокам концевых мер длины с боковинами.
Нутромеры НИ производства КРИН поставляются с первичной заводской поверкой, для других производителей поверка заказывается дополнительно.

Нутромеры индикаторного типа как механические так и цифровые в целом широко применяют при ремонте силовых установок, в частности, дизельных двигателей. При помощи этих измерительных устройств используют для контрольных замеров диаметров цилиндров. Рассмотрим этот процесс подробнее. Для проверки размера необходимо взять имен тот нутромер, диапазон измерения которого подходит для проведения замера. Перед началом работы его необходимо калибровать. Для выполнения этой задачи необходим микрометр с диапазоном измерений сопоставимом с размером нутромера.

Нутромер индикаторный цифровой НИЦ – оснащен электронным индикатором с цифровым табло для удобства снятия показаний. Предназначен для измерения внутренних размеров относительным методом. Возможность установки на ноль в любой точке, переключатель “миллиметры/дюймы”.

Нутромеры НИ-В повышенной точности – комплектуются измерительной головкой с точностью показаний 1 мкм и применяются для высокоточных измерений внутренних размеров относительным методом. Диапазон измерений – до 450 мм. Возможна поставка с поверкой или калибровкой, используются для измерений малых отверстий.

Нутромеры микрометрические НМ и НМИ – предназначены для измерения внутренних размеров абсолютным методом. Состоят из микрометрической головки, сменных удлинителей для обеспечения измерений в заданном диапазоне, и измерительного наконечника (штучные узкодиапазонные нутромеры являются неразборными и поставляются без сменных стержней). Модели НМИ-4000 и НМИ-6000 оснащены микрометрической головкой с индикатором часового типа ИЧ. Возможна поставка нутромеров с поверкой или калибровкой.

Для измерения внутренних размеров от 50 до 5 000 мм выпускают простейшие микрометрические нутромеры с ценой деления 0,01 мм.И на практике они находят своё применение, главным образом в тяжелом машиностроении для измерения отверстий диаметром более 500 мм, так как в этом диапазоне нет удобных универсальных приборов для измерения отверстий.

Индикаторные нутромеры выпускают по ГОСТ 868 – 82 “Нутромеры индикаторные” и международному стандарту DIN 863-4. Микрометрические нутромеры выпускают по ГОСТ 10-88 “Нутромеры микрометрические”.

Для длительного хранения инструмент должен быть надлежащим образом упакован в штатную готовальню, выполненную в заводских условиях. Для ее производства применяют древесину хвойных пород. В целях сохранности инструмента внутри готовальни обустраивают ложементы, обклеенные мягким материалом. Сам инструмент должен находиться в полиэтиленовом пакете, в одном пакете с ним может находиться паспорт, который может быть совмещен с руководством по эксплуатации.

При транспортировке изделия необходимо соблюдать правила перевозки грузов на соответствующем виде транспорта. В частности, для перевозки, должен быть использован поддон, размером 0,8 на 1,2 м, выполненный в соответствии с ГОСТ 9557-87. При перевозке небольшой партии допустимо применение в качестве упаковки полиэтиленовой пленки толщиной 0,08 – 0,2 мм.

Помещение для длительного хранения (бюро инструментального хозяйства) мерительного инструмента должно быть сухим, оптимальным можно считать то, в котором температура находиться в диапазоне от 20 – 25 градусов, при средней влажности 80%.

Выше были представлены двухконтактные виды нутромеров (за исключением микрометрического), существуют так же и трёхконтактные.

В конструкции нутромера применена трехточечная схема измерения, включающая три измерительных обычно линейных или сферических наконечника, расположенных под углом 120° и конический шток, установленный между ними. Наконечники одним концом соприкасаются с поверхностью измеряемого отверстия, а другим опираются на коническую поверхность штока, соединенного с микрометрической или индикаторной измерительной головкой. Перемещения наконечников и штока отсчитывают с помощью микрометрической или индикаторной головки. Достоинство такого метода измерения состоит в том, что наконенчики самоцентрируются и выравниваются по поверхности измеряемого отверстия. Это исключает необходимость покачивания нутромера для поиска минимального диаметра и появление субъективных погрешностей, зависящих от квалификации контролера. Другим достоинством трехконтактного нутромера является соблюдение принципа Аббе.

Следующий из существующих видов нутромеров это нутромер-пробка.

Как видно из вышеизложенного, все описанные универсальные нутромеры (двухконтактные, техконтактные) не обеспечивают высокой точности измерения, не лучше 2-5 мкм. Однако в автомобильном производстве, при изготовлении топливной и гидроаппаратуры и подшипников качения часто требуется более высокая точность причем при измерении в цеховых условиях.

Поэтому с развитием автоматического серийного производства и появлением новых методов измерений начали выпускать приборы с нутромерами-пробками. Первыми такими приборами были пневматические приборы с пробками, снабженными измерительными соплами. Это произошло потому, что первыми измерительными системами и преобразователями, которые в массовом порядке применялись в машиностроении и в автоматизированном производстве были пневматические измерительные системы высокого и низкого давления.

Пневматические калибры-пробки были досконально изучены, рассчитаны и широко применялись в производстве. Был разработан ГОСТ 14864-78 «Пробки пневматические для отверстий ….».

Этот ГОСТ распространяется на пневматические калибры-пробки для манометрических пневматических систем, контролирующих отверстия диаметром до 100 мм. ГОСТом регламентируются исполнительные размеры пробок по всем элементам: диаметральные размеры по соплам и направляющим, форма и размеры канавок для выхода воздуха, габариты, диаметры и форма измерительных сопел для сильфонных приборов высокого давления. Пробки для контроля отверстий диаметром до 27 мм имеют измерительные сопла, выполненные за одно целое с корпусом пробки. Пробки большего размера имеют вставные сопла.

Позднее появились индуктивные приборы с индуктивными каибр-пробками, которые почти полностью вытеснили пневматические приборы, благодаря своим несомненным преимуществам.

Потом разработали более конструктивный вариант прибора для контроля отверстий малого диаметра. Этот прибор состоит из пневматического калибра-пробки, пневмоиндуктивного или пневмоэлектронного преобразователя, микропроцессорного блока и блока подготовки воздуха.

Как пользоваться нутромером

Многие детали имеют отверстия и полости. Для их измерения созданы специализированные инструменты – нутромеры. Далее рассмотрено, устройство нутромера, варианты данных инструментов, как пользоваться нутромером.

Устройство и принцип функционирования

Нутромеры – это инструменты для нахождения внутренних размеров (диаметров отверстий, пазов и т. д.). Они рассчитаны на случаи, когда недоступно применение других инструментов в виде рулетки либо линейки или они недостаточно точны. Рассматриваемые приборы применяют в автосервисах, механосборочных цехах, слесарных мастерских, например, для замера цилиндров двигателя.

Общепринятой классификации данных устройств не создано, однако нутромеры дифференцируют на основе различных параметров. Так, по конструкции их подразделяют на шариковые, цанговые и др., по варианту отсчетного устройства – на индикаторные и др., по контакту с определяемой поверхностью – на кромочные и др. Наиболее известна и обширно распространена классификация, основанная на совокупности конструктивных особенностей нутромеров и их назначении:

  • Конструкция микрометрических моделей, включает соединенные колпачком микрометрический винт и барабан, стебель со сферическим наконечником, предохранительный колпачок, стопор. К тому же их комплектуют несколькими удлинителями и мерой. Головку вариантов с верхним значением измерений более 1250 мм оснащают индикатором часовой конструкции с интервалами делений в 0,01 мм. Рассматриваемые приборы производят на основе ГОСТ 17215. Встречается пять типоразмеров таких моделей с различными рабочими диапазонами: от 50 до 2500 мм. Варианты с часовым индикатором представлены еще в трех типоразмерах с диапазоном от 1250 до 10000 мм. Устройства данного типа ввиду хороших метрологических параметров (точность и погрешность равны около 0,01 и 0,006 мм соответственно) обычно применяют для точной проверки размеров.
  • Индикаторные нутромеры включают два основных узла: индикатор с часовым циферблатом и измерительную часть, представленную двумя стержнями (подвижным, служащим для монтажа сменных вставок, и находящимся в корпусе неподвижным). Кроме того, в корпусе размещена система подвижных рычагов. Индикаторные приборы подходят для отверстий диаметром от 6 мм и имеют погрешность в 0,025-0,15 мм. Движение стержня и цена деления составляют 1-10 и 0,001-0,01 мм соответственно.
Читайте также:  КУЗОВНЫЕ ДОМКРАТЫ

Первые простейшие модели нутромеров появились около XVII в. Данные инструменты были выполнены в виде циркулей с отогнутыми наружу концами ножек. Современные начальные модели, называемые штихмассами, представлены трубками либо стержнями с наконечниками сферической формы. Они рассчитаны на крупные отверстия диаметром 100-2500 мм.

Принцип их функционирования состоит в передаче величины перемещения подвижного стержня на отсчетное устройство посредством передаточного механизма. Нутромеры оснащают передаточными механизмами различного типа, что также определяет сферу применения. Так, варианты с рычажными, конусными и клиновыми передачами рассчитаны на небольшие отверстия. Конусные модели (кромочные со стрелочной головкой либо шкалой с нониусом, цанговые, шариковые в трех типоразмерах) применяют для малых отверстий (от 0,2, от 0,95, 3-18 мм соответственно). Большинство индикаторных нутромеров оснащают передаточными устройствами рычажного либо клинового типа. Рабочий диапазон для них составляет от 3 до 1000 и от 18 до 50 мм соответственно.

Еще одним классификационным признаком для нутромеров является количество точек соприкосновения с поверхностью.

Большинство вариантов относится к двухконтактной схеме измерения.

Только пассиметры имеют три наконечника, один из которых подвижен. Такие устройства имеют рабочий диапазон от 19 до 120 мм. Кроме того, для дифференциации нутромеров используют форму контактной поверхности (плоская, кромочная и др.).

Отдельно следует отметить электронные модели. Они представлены модификациями микрометрических нутромеров, оснащенными электронной головкой с цифровым отсчетом. Как и для механических аналогов, принцип измерения такими приборами основан на сравнении с мерой, в качестве которой в данном случае применяется высокоточное кольцо.

Настройка

Предварительно требуется настройка нутромера, состоящая, прежде всего, в обнулении. Тип инструмента определяет, как настроить нутромер.

Микрометрический нутромер обнуляют с применением меры. Рекомендуется осуществлять данную операцию при 20 °C.

  • Начинают с размещения головки прибора между губками меры.
  • Путем вращения барабана обеспечивают прижатие поверхностей измерения.
  • Далее, закрутив фиксирующий винт, извлекают инструмент.
  • Наконец, снимают показания. О готовности прибора свидетельствует совмещение продольной линии стебля с нулевым значением барабана.

Перед работами с индикаторным нутромером также осуществляют обнуление. Для этого наиболее подходит калибровочное кольцо. В отсутствии его применяют концевая мера со струбциной либо прочий инструмент, который может быть представлен штангенциркулем либо микрометром.

Далее рассмотрена проверка точности индикаторного микрометра с использованием концевой меры. В случае допустимой погрешности выполняют приведенную далее последовательность действий:

  • Прежде всего, подбирают сменный стержень и монтируют на измерительную штангу прибора.
  • Далее на микрометре выставляют размер, соответствующий стержню, и зажимают стопорный винт.
  • Затем нутромер через втулку стебля фиксируют в тисках.
  • Его стержень устанавливают между микрометрическими измерительными губками.
  • Наконец, путем вращения индикаторной головки стрелку совмещают с нулевой отметкой циферблата.

Технология измерения

Прежде всего, необходимо отметить, что разработано два метода измерения:

  • Абсолютный способ состоит в определении значения расстояния между заданными точками путем помещения прибора внутрь.
  • При относительной технологии для получения результата используется образец.

Следует отметить, что названные технологии подходят для различных типов измерительных приборов. Первая служит для микрометрического нутромера, а вторая – для индикаторного.

Измерения прибором первого типа включают приведенные далее операции:

  • На инструменте выставляют приблизительный размер измеряемого отверстия.
  • Головку располагают внутри перпендикулярно продольной оси прибора.
  • C обеих сторон обеспечивают прижатие поверхностей измерения к стенкам путем вращения трещотки и барабана.
  • Закручивают стопорный винт и извлекают инструмент.
  • Для получения результата к значению шкалы прибавляют длину манометрической головки, а также удлинителя в случае его применения.

При работах с отверстиями цилиндрической формы инструмент покачивают поочередно в продольном и поперечном направлениях с целью определения максимального и минимального значения соответственно.

Измерение индикаторным прибором также включает несколько этапов:

  • Прежде всего, индикаторный нутромер располагают внутри отверстия стержнем перпендикулярно продольной оси измеряемой детали, корректируя его легкими покачиваниями.
  • Отклонение стрелки вправо свидетельствует о меньшем диаметре отверстия в сравнении с образцом, влево – о большем.
  • Далее снимают показания, применяя обе шкалы индикатора.
  • Наконец, к полученному значению прибавляют диаметр образца.

Для измерения больших отверстий индикаторные нутромеры комплектуют дополнительными стержнями-удлинителями.

Обслуживание и эксплуатация

Для обеспечения длительного эксплуатационного срока нутромера следует правильно эксплуатировать и обслуживать его.

Так, для микрометрических вариантов требуется периодически осуществлять проверку, регламентированную ГОСТ 17215-71. Она относится к следующим параметрам.

  • Внешний вид, маркировка, наличие комплектующих.
  • Взаимодействие конструктивных элементов.
  • Размер штрихов стебля и барабана.
  • Расстояние между стеблем и торцом барабана.
  • Радиус головки и измерительной поверхности.
  • Погрешность головки.
  • Погрешность общего размера головки с удлинителями, а также жесткость (для вариантов с верхним рабочим пределом более 1250 мм).
  • Биение точки касания.
  • Размеры меры в точках измерительной поверхности.

Проверка индикаторных вариантов значительно проще. Она включает пункты, регламентированные рекомендациями МИ 2194-92 и 2193-92:

  • Внешний осмотр.
  • Опробование.
  • Определение технических и метрологических параметров.

Скачать рекомендацию МИ 2193-92

Скачать рекомендацию МИ 2194-92

Для микрометрических моделей следует избегать перетяжки соединения удлинителей и головки. Во избежание изменения размеров меры не следует выкручивать ее винты. Не стоит лишний раз вынимать стержни. При работе следует удерживать инструмент в местах наименьшего прогиба.

Перед хранением инструмент следует разобрать, протереть авиационным бензином и смазать его элементы, кроме циферблата.

Разборку индикаторного нутромера осуществляют путем откручивания удлинительного стержня и отсоединения от штанги индикатора. Хранение осуществляют в температурном диапазоне от 15 до 25 °C.

Диапазон рабочих температур для нутромеров составляет от 15 до 25 °C, влажность – до 80%.

КОНТРОЛЬ И ИЗМЕРЕНИЕ ДИАМЕТРОВ ВАЛОВ И ОТВЕРСТИЙ

Требования, записанные в технологических процессах, обя­зательны как к окончательным, так и к операционным, т. е. промежуточным, размерам. Невыполнение операционных раз­меров, которые могут быть предельными, может привести к забракованию детали, так как на последующей операции не всегда удастся достигнуть требуемой точности размеров и гео­метрической формы.

1.1. Для контроля диаметров валов наиболее часто используют гладкие предельные калибры-скобы. Контроль больших разме­ров или размеров, недоступных для стандартных калибров, производят специальными калибрами-скобами.

1) малые затраты времени,

2) простота и надежность

3) возможность использования для контроля деталей непосредственно на станке.

1) досто­верность результата измерения будет убывать с увеличением размера скобы. Для жестких скоб с размерами более 300мм это различие в размерах может составлять 20—30 мкм и бо­лее, что значительно искажает результаты измерения. Поэтому при контроле жесткими скобами валов больших размеров эту разницу следует учитывать.

При контроле валов станочником, мастером или контролером ОТК, используются рабочими калибрами, имеющие клейма:

Р—ПР (проходная сторона или проходной рабочий калибр)

Р—НЕ (непроходная сторона или непроходной рабочий ка­либр).

При контроле валов, сданных на склад, пользуются приемными калибрами, имеющими клейма:

П—ПР (проходная сторона или проходной приемный калибр)

П—НЕ (непроход­ная сторона или непроходной приемный калибр). Приемные проходные калибры имеют смещенное поле допуска, учитываю­щее возможность изготовления детали по изношенным рабочим проходным калибрам.

1.2. Для контроля диаметров отверстийиспользуют предельные гладкие калибры-пробки. Контроль диаметров отверстий больших размеров или размеров, недоступных для стандартных калибров, производят специальными калибрами.

1)малые затраты времени,

2)простота и надежность

3)применяют для контроля деталей как снятых со станка, так и в процессе обработки.

Надежность контроля отверстий пробками достаточно высока, т.к. пробки поч­ти де изнашиваются.

1.3. Для определения действительных размеров валов и отверстий применяют универсальные измерительные ин­струменты и приборы: штангенциркули, микрометры, рычажные микрометры, рычажные скобы, микрометрические нутромеры, индикаторные нутромеры и др.

Схема измерения диаметра отверстия с помощью индикаторного нутромера: рис. Прибор состоит из длинной трубки 2, в ко­торой помещен шток, связывающий изме­рительный наконечник 1 прибора с измери­тельным штифтом индикатора 3. Трубка 2 соединена с корпусом нутромера 4, в кото­ром помимо рычажной передачи находится поперечная трубка,, несущая на одном кон­це-измерительный наконечник 1, а на дру­гом — регулируемый сменный удлинитель 5, с помощью которого можно производить измерения диаметров отверстий в разных интервалах. При измерениях индикаторный нутромер следует покачивать, как показано на рисунке, для того чтобы найти наименьшее показание, соответствующее кратчайшему расстоянию ме­жду диаметрально противоположными образующими измеряемо­го отверстия.

Для измерения внутренних диаметров отверстий применяют также рычажные нутромеры, имеющие пределы измерения 11 — 120 мм, и клиновые нутромеры с пределами измерения 5— 250 мм.

Предельные погрешности измерения клиновыми и рычаж­ными нутромерами значительно меньше, чем погрешности изме­рения индикаторными нутромерами, и составляют у рычажных ±0,008 мм, у клиновых ±0,001—±0,0005 мм.

В крупносерийном и массовом производстве для проверки точных диаметров валов и отверстий широко применяют пнев­матические приборы высокого или низкого давления, работаю­щие в сочетании со специальными измерительными головками (скобами и пробками), а также оптико-механические измери­тельные приборы и др.

1.4. Для контроля диаметров больших размеров применяют:

1) жесткие линейные скобы, имеющие меньшую массу и большую жесткость. Такие скобы применяют для размеров 1500—2000 мм и более. Использование возможно только для контроля детали с торца из-за малого вылета губок скобы, также применяются для измерения линейных размеров

2) Микрометры – производят измерение диаметров валов в любом месте осевого сечения

4) диаметральные скобы – производят измерение диаметров валов в любом месте осевого сечения

Линейная скоба имеет микрометрическую головку 1, переме­щающуюся по трубе 3 с кронштейном 2, в котором она закреп­лена и индикатор 5, перемещающийся по трубе 3 с кронштей­ном 4. В требуемом положении кронштейны 4 и 2 фиксируют с помощью винтовых устройств 6. Линейными скобами можно оп­ределять размеры торца детали только со стороны, поэтому их используют для измерения диаметров наружных поверхностей деталей типа дисков, колец фланцев, крышек и т. п.

Для измерения больших наружных диаметров валов с тор­ца могут применять также штангенциркули.

Недостаток: точность измерения ими меньше точно­сти измерения инструментами с микрометрическими измери­тельными головками, у которых отсчет по нониусу производят с точностью 0,01 мм, в то время как нониус штангенинструмента, как правило, имеет точность отсчета 0,05 мм и грубее. Вы­пускают облегченные штангенциркули с величиной отсчета по нониусу 0,1 мм и с пределами измерения 1500—3000 мм и 2000— 4000 мм. Линейные скобы с микрометрическими головками и штангенциркули применяют также для измерения длин деталей.

Для измерения больших диаметров валов применя­ют инструменты, основанные на косвенных методах:

1) При ис­пользовании способа опоясывания применяют рулетки с длиною стальной ленты 10—50 м, и специальные измерительные сталь­ные ленты, При применении рулетки ее лентой опоясывают вал и снимают показание со шкалы ленты, равное длине окружно­сти. Известно, что длина окружности L=πD, где D — диаметр детали. Следовательно, значение диаметра будет равно D = L/π. При измерении больших диаметров в серийном производстве применяют специальные ленты, имеющие определенную длину. Опоясывая такой лентой 1 измеряемую деталь (рис. 26, а), проверяют зазор а между торцами ленты с помощью щупа. При этом диаметр D = L+а/π, где L — длина ленты; а — зазор между торцами ленты.

Читайте также:  Лучшие автошколы

При таком методе измерения необходимо хорошее натяже­ние ленты (до ее полного прилегания к поверхности вала), по­этому применяют грузы или специальные натяжные устройства, у специальных лент приваривают натяжные ушки.

2) метод измерения диаметра вала по хорде и высоте сег­мента с помощью штангенциркуля: рис. 26, б. Определяе­мый диаметр D рассчитывают по формуле

где l — длина хорды (или величина отсчета по шкале штанген­циркуля), h — высота сегмента или вылет губок штангенцир­куля (величина постоянная).

3) метод измерения диаметра вала по хорде и высоте сег­мента с помощью седлообразного при­бора 3 с клиновыми вставками: рис. 26, в. Для данного случая измерения рассчитывают отклонение ΔD диаметра детали от номинального;

где а — угол между измерительными плоскостями конических вставок; Δh — величина отклонения, отсчитанная по шкале из­мерительного прибора.

Седлообразные приборы перед измерением настраивают на нулевое деление по радиусным калибрам или шаблонам, радиу­сы которых равны номинальному размеру радиуса измеряемой детали.

К косвенным методам измерения больших диаметров отно­сятся измерения детали на станке от дополнительных измери­тельных баз.

Схема определения от дополнительных баз размеров детали с большими габаритными размерами, обрабатываемой на токарно-карусельном станке: рис. 27а. На колонке 1 станка закреплена закаленная пластина 2, рас­стояние А до которой от оси вращения планшайбы станка дол­жно быть строго определенным. Это обеспечивается установкой на планшайбе станка контрольной оправки 3 диаметром d и от которой определяют размер а до пластаны 2. Тогда А = а + 0,5d. Его клеймят из пластине 2. При обработке детали 4 для измерения ее наружного диаметра D достаточно измерить расстоя­ние l между пластиной и образующей детали: D = 2 (А-l).

1) обеспечивает тре­буемую точность при обработке по 3-му классу точности.

2) возможность опре­делить погрешности формы обрабатываемой поверхности.

|следующая лекция ==>
Методы измерений и их классификация|

Дата добавления: 2016-02-02 ; просмотров: 9582 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как проводить измерения индикаторными нутромерами?

Нутромеры предназначены для измерения диаметров отверстий, размеров пазов и внутреннего расстояния между поверхностями. Данные приборы применяются в тех случаях, когда использование линейки и рулетки невозможно или не обеспечивает необходимую точность замеров.

Приборы данного типа являются идеальным инструментом для проверки внутреннего диаметра цилиндров при сборке и ремонте автомобильных моторов. Сфера их применения: слесарные мастерские, пункты автосервиса и механосборочные цеха.

Что измеряют нутромеры

Существует два метода замеров: абсолютный и относительный. Первый применяется при использовании микрометрического нутромера. Прибор помещается внутрь отверстия и работает аналогично микрометру. Он замеряет абсолютное расстояние от одной поверхности до другой в миллиметрах.

Относительный метод применяется при использовании индикаторного нутромера. Перед началом измерений прибор приводится в рабочее положение, настраивается и выставляется «на ноль».

Принцип работы и характеристики индикаторных нутромеров

Каждый прибор состоит из двух основных узлов: индикатора с циферблатом часового типа и измерительной части (стебля). Величина перемещения подвижного стержня передается на отсчетное устройство с помощью клиновой или рычажной передачи.

Характеристики индикаторных нутромеров:

  • минимальный диаметр измеряемого отверстия – от 6 мм;
  • погрешность – 0,15-0,025 мм;
  • цена деления – от 0,01 до 0,001 мм;
  • движение стержня – от 1 до 10 мм (зависит от модели).

Как работать с индикаторным нутромером

Как того требует инструкция, перед началом работы инструмент нужно выставить «на ноль». Удобнее всего это сделать с помощью калибровочного кольца. При его отсутствии можно воспользоваться концевой мерой со струбциной или другим прибором (например, микрометром или штангенциркулем).

Настройка нутромера по микрометру

В первую очередь проверяется точность микрометра с помощью концевой меры. Если погрешность находится в допустимых пределах, то действовать необходимо по следующему плану:

  • подбирается сменный стержень (например, длиной 10 мм) и устанавливается на измерительную штангу нутромера;
  • на микрометре так же выставляется размер 10 мм, после чего зажимается стопорный винт;
  • нутромер фиксируется в тисках через деревянную втулку на стебле. Этим обеспечивается его неподвижность;
  • стержень нутромера помещается между измерительными губками микрометра;
  • отклонившаяся стрелка совмещается с отметкой «ноль» на циферблате вращением головки индикатора.

Для измерения диаметра цилиндра прибор помещается внутрь отверстия так, чтобы его стержень находился перпендикулярно продольной оси изделия. Нужное положение достигается с помощью легких покачиваний.

Если стрелка отклоняется влево от нуля, то диаметр исследуемого отверстия больше размера образца. Если вправо – то меньше.

Снимаем показания: стрелка отклонилась влево на 15 делений. Делаем расчет: умножаем 15 на цену одного деления (0,01 мм) и получаем 0,15 мм.

Зная диаметр образца (10 мм), производим окончательный расчет: 10+0,15=10,15 мм.

При снятии показаний стоит учитывать, что индикатор имеет две шкалы:

  • большую – сотые доли мм.;
  • малую – миллиметры.

Для измерения отверстий больших размеров применяются дополнительные стержни-удлинители, входящие в комплектацию нутромера. Более детальную информацию о том, как пользоваться прибором, вы можете найти в инструкции по эксплуатации.

Как работать микрометрическим нутромером

Перед началом работ прибор устанавливается «на ноль» с помощью меры, входящей в комплект. Процедуру рекомендуется выполнять при температуре +20 о С по следующему плану:

  • микрометрическая головка размещается между губами установочной меры;
  • вращением барабана добиваемся прижатия измерительных поверхностей с обеих сторон;
  • закручиваем фиксирующий винт и извлекаем прибор.

Снимаем показания. Если нулевое значение на барабане совпадает с продольной линией на стебле, то прибор настроен и готов к работе.

Как измерять микрометрическим нутромером

Принцип работы с таким прибором отличается от замеров с помощью индикаторных аналогов. Для измерения диаметра цилиндра на нутромере выставляется приблизительный его размер. После этого микрометрическая головка помещается в отверстие перпендикулярно его продольной оси. Вращением барабана и трещотки необходимо добиться прижатия измерительных поверхностей с двух сторон.

Следующее действие – завинчиваем до упора стопорный винт и извлекаем прибор из отверстия для снятия показаний. Для получения искомого значения складываются три составляющие:

  • значение на шкале;
  • длина манометрической головки;
  • размер удлинителя, если таковой применяется.

Условия эксплуатации, хранения и методика поверки нутромеров

Межповерочный интервал для измерителей данного типа составляет 1 год. Поверка прибора производится в соответствии с методикой МИ 2192-92.

Условия эксплуатации нутромеров:

  • окружающая температура – от +15 до +25 о С;
  • влажность – до 80%;
  • установка ноля – перед каждым началом работы.

При пользовании индикаторным нутромером рекомендуется его удерживать за деревянную втулку. В противном случае, стальная штанга будет нагреваться от тепла руки. Это повлечет ее удлинение на сотые доли миллиметра, что спровоцирует искажение показаний индикатора.

Как разобрать индикаторный нутромер

Разборка прибора производится в порядке, обратном сборке. Сначала вывинчивается удлинительный стержень, а затем индикатор отделяется от измерительной штанги. Перед длительным хранением все элементы конструкции, за исключением циферблата индикатора, протираются авиационным бензином и смазываются. Хранение нутромера осуществляется в упаковочном боксе при температуре +20±5°С.

Как правильно пользоваться штангенциркулем

Штангенциркуль – высокоточный инструмент, используемый для измерения наружных и внутренних линейных размеров, глубин отверстий и пазов, разметки. Свое название этот универсальный прибор получил от линейки-штанги, которая служит основой его конструкции.

Определение показаний по нониусу

Для определения показаний штангенциркуля необходимо сложить значения его основной и вспомогательной шкалы.

  1. Количество целых миллиметров отсчитывается по шкале штанги слева направо. Указателем служит нулевой штрих нониуса.
  2. Для отсчета долей миллиметра необходимо найти тот штрих нониуса, который наиболее точно совпадает с одним из штрихов основной шкалы. После этого нужно умножить порядковый номер найденного штриха нониуса (не считая нулевого) на цену деления его шкалы.

Результат измерения равен сумме двух величин: числа целых миллиметров и долей мм. Если нулевой штрих нониуса точно совпал с одним из штрихов основной шкалы, полученный размер выражается целым числом.

На рисунке выше представлены показания штангенциркуля ШЦ-1. В первом случае они составляют: 3 + 0,3 = 3,3 мм, а во втором — 36 + 0,8 = 36,8 мм.

Нониус с ценой деления 0,05 мм

Шкала прибора с ценой деления 0,05 мм представлена ниже. Для примера приведены два различных показания. Первое составляет 6 мм + 0,45 мм = 6,45 мм, второе — 1 мм + 0,65 мм = 1,65 мм.

Аналогично первому примеру необходимо найти штрихи нониуса и штанги, которые точно совпадают друг с другом. На рисунке они выделены зеленым и черным цветом соответственно.

Устройство механического штангенциркуля

Устройство двустороннего штангенциркуля с глубиномером представлено на рисунке. Пределы измерений этого инструмента составляют 0—150 мм. С его помощью можно измерять как наружные, так и внутренние размеры, глубину отверстий с точностью до 0,05 мм.

Основные элементы

  1. Штанга.
  2. Рамка.
  3. Губки для наружных измерений.
  4. Губки для внутренних измерений.
  5. Линейка глубиномера.
  6. Стопорный винт для фиксации рамки.
  7. Шкала нониуса. Служит для отсчета долей миллиметров.
  8. Шкала штанги.

Губки для внутренних измерений 4 имеют ножевидную форму. Благодаря этому размер отверстия определяется по шкале без дополнительных вычислений. Если губки штангенциркуля ступенчатые, как в устройстве ШЦ-2, то при измерении пазов и отверстий к полученным показаниям необходимо прибавлять их суммарную толщину.

Величина отсчета по нониусу у различных моделей инструмента может отличаться. Так, например, у ШЦ-1 она составляет 0,1 мм, у ШЦ-II 0,05 или 0,1 мм, а точность приборов с величиной отсчета по нониусу 0,02 мм приближается к точности микрометров. Конструктивные отличия в устройстве штангенциркулей могут быть выражены в форме подвижной рамки, пределах измерений, например: 0–125 мм, 0–500 мм, 500–1600 мм, 800–2000 мм и т.д. Точность измерений зависит от различных факторов: величины отсчета по нониусу, навыков работы, исправного состояния инструмента.

Порядок проведения измерений, проверка исправности

Перед работой проверяют техническое состояние штангенциркуля и при необходимости настраивают его. Если прибор имеет перекошенные губки, пользоваться им нельзя. Не допускаются также забоины, коррозия и царапины на рабочих поверхностях. Необходимо, чтобы торцы штанги и линейки-глубиномера при совмещенных губках совпадали. Шкала инструмента должна быть чистой, хорошо читаемой.

  • Губки штангенциркуля плотно с небольшим усилием, без зазоров и перекосов прижимают к детали.
  • Определяя величину наружного диаметра цилиндра (вала, болта и т. д.), следят за тем, чтобы плоскость рамки была перпендикулярна его оси.
  • При измерении цилиндрических отверстий губки штангенциркуля располагают в диаметрально противоположных точках, которые можно найти, ориентируясь по максимальным показаниям шкалы. При этом плоскость рамки должна проходить через ось отверстия, т.е. не допускается измерение по хорде или под углом к оси.
  • Чтобы измерить глубину отверстия, штангу устанавливают у его края перпендикулярно поверхности детали. Линейку глубиномера выдвигают до упора в дно при помощи подвижной рамки.
  • Полученный размер фиксируют стопорным винтом и определяют показания.

Работая со штангенциркулем, следят за плавностью хода рамки. Она должна плотно, без покачивания сидеть на штанге, при этом передвигаться без рывков умеренным усилием, которое регулируется стопорным винтом. Необходимо, чтобы при совмещенных губках нулевой штрих нониуса совпадал с нулевым штрихом штанги. В противном случае требуется переустановка нониуса, для чего ослабляют его винты крепления к рамке, совмещают штрихи и вновь закрепляют винты.

Ссылка на основную публикацию