Контактная система зажигания

Контактная система зажигания

Контактная система зажигания является самым старым типом системы зажигания. В настоящее время данная система применяется на некоторых моделях отечественных автомобилей (т.н. «классике»). Создание высокого напряжения и распределение его по цилиндрам в данной системе происходит с помощью контактов.

Контактная система зажигания состоит из следующих элементов: источника питания, выключателя зажигания, механического прерывателя тока низкого напряжения, катушки зажигания, механического распределителя тока высокого напряжения, центробежного регулятора опережения зажигания, вакуумного регулятора опережения зажигания, свечей зажигания и высоковольтных проводов.

Механический прерыватель предназначен для размыкания цепи низкого напряжения (цепи первичной обмотки катушки зажигания). При размыкании контактов во вторичной цепи катушки зажигания наводится высокое напряжение. Для защиты контактов от обгорания в цепь параллельно контактам включен конденсатор.

Катушка зажигания служит для преобразования тока низкого напряжения в ток высокого напряжения. Катушка имеет две обмотки – низкого и высокого напряжения.

Механический распределитель обеспечивает распределение тока высокого напряжения по свечам цилиндров двигателя. Распределитель состоит из ротора (обиходное название «бегунок») и крышки. В крышке выполнены центральный и боковые контакты. На центральный контакт подается высокое напряжение от катушки зажигания. Через боковые контакты высокое напряжение передается на соответствующие свечи зажигания.

Прерыватель и распределитель конструктивно объединены в одном корпусе и приводятся в действие от коленчатого вала двигателя. Данное устройство имеет общее название прерыватель-распределитель (обиходное название – «трамблер»).

Центробежный регулятор опережения зажигания служит для изменения угла опережения зажигания в зависимости от числа оборотов коленчатого вала двигателя. Конструктивно центробежный регулятор состоит из двух грузиков. Грузики воздействуют на подвижную пластину, на которой расположены кулачки прерывателя.

Углом опережения зажигания называется угол поворота коленчатого вала двигателя, при котором происходит подача тока высокого напряжения на свечи зажигания. Для того, чтобы топливно-воздушная смесь полностью и эффективно сгорела зажигание производится с опережением, т.е. до достижения поршнем верхней мертвой точки.

Установка угла опережения зажигания производится регулировкой положения прерывателя-распределителя в двигателе.

Вакуумный регулятор опережения зажигания обеспечивает изменение угла опережения зажигания в зависимости от нагрузки на двигатель. Нагрузка на двигатель определяется степенью открытия дроссельной заслонки (положением педали газа). Вакуумный регулятор соединен с полостью за дроссельной заслонкой и, в зависимости от степени разряжения в полости, изменяет угол опережения зажигания.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от распределителя на свечи зажигания.

Свеча зажигания предназначена для воспламенения топливно-воздушной смеси путем образования искрового разряда.

Принцип работы контактной системы зажигания

При замкнутом контакте прерывателя ток низкого напряжения протекает по первичной обмотке катушки зажигания. При размыкании контактов во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения. По высоковольтным проводам ток высокого напряжения подается на крышку распределителя, от которой распределяется по соответствующим свечам зажигания с определенным углом опережения зажигания.

При увеличении оборотов коленчатого вала двигателя, увеличиваются обороты вала прерывателя распределителя. Грузики центробежного регулятора опережения зажигания под действием центробежной силы расходятся, перемещая подвижную платину с кулачками прерывателя. Контакты прерывателя размыкаются раньше, тем самым увеличивается угол опережения зажигания. При уменьшении оборотов коленчатого вала двигателя угол опережения зажигания уменьшается.

Дальнейшим развитием контактной системы зажигания является контактно-транзисторная система зажигания. В цепи первичной обмотки катушки зажигания применен транзисторный коммутатор, управляемый контактами прерывателя. В данной системе за счет применения транзисторного коммутатора уменьшена сила тока в цепи первичной обмотки, тем самым увеличен срок службы контактов прерывателя.


mark2grande71 › Блог › Контактная Система Зажигания

Предназначение системы зажигания – образование и передача искры на свечи за­жи­га­ния в строгом соответствии с работой цилиндров двигателя внутреннего сгорания. Система зажигания эволюционировала вместе с усовершенствованием технологий в ав­то­мо­би­ле­стро­е­нии и на данный момент существуют несколько принципиально различных систем зажигания современных автомобилей:
Контактная
Контактно-транзисторная
Конденсаторная
Электронная
Бесконтактно-транзисторная

Один из давнейших видов системы зажигания – это система контактного типа или кон­такт­ная система зажигания. В контактной системе зажигания создание, последующее пе­ре­рас­пре­де­ле­ние по цилиндрам высокого напряжения производится через контакты.

Также существует единая система управления как зажиганием, так и подачей топ­лив­ной смеси при помощи компьютерного микропроцессора, и эта система получила название микропроцессорной системы управления двигателем, а отличается от других систем отсутствием кулачка и ротора. Кроме того в этой системе каждой свече соответствует своя катушка, а, соответственно, количество коммутаторов равно количеству цилиндров. Такая система на сегодняшний день устанавливается практически на все новые марки автомобилей. Однако параллельно продолжают существовать и успешно выполнять свои функции и другие системы зажигания.
Рассмотрим общие характеристики систем зажигания:
КСЗ (KSZ) — самая распространенная контактная система зажигания. В прин­ци­пи­аль­ной схеме этой системы имеется катушка, распределитель и прерыватель.
КТСЗ (HKZk, JFU4, HKZ-2) — у этой системы имеется контактный датчик, в то время как энергия в этой системе предварительно накапливается.
БТСЗ (HKZh, EZK)— в этой системе используются транзисторы, а контакты от­сутст­ву­ют, в схему включен индукционный датчик.
БТСЗ (TSZk) — также бесконтактная система, имеющая в основе транзисторную схему, однако в системе установлен датчик Холла и система накопления емкости.
КТСЗ (TSZi) — система, имеющая контакты и транзисторы, а также накопитель энергии за счет индукции.
БТСЗ (TSZh) — система бесконтактная, снабженная датчиком индуктивности.
БТСЗ (VSZ, EZL) — работает без контактов, однако имеет датчик Холла и работает за счет накопленной индуктивности энергии.
МСУД — система работает под управлением микропроцессора, вращающиеся детали отсутствуют.

Самой простой МСУД была оборудована небольшая часть автомобилей оте­чест­вен­но­го производства ВАЗ 2108 (ВАЗ 21088-02).

Если в автомобиле используется контактная система зажигания – это означает, что рабочая смесь в камере сгорания воспламеняется в принудительном порядке искрой, которая возникает на свече зажигания. Сама же искра возникает на электродах свечи вследствие подачи тока высокого напряжения, который, в свою очередь, генерирует катушка за­жи­га­ния. По сути, эта катушка является трансформатором, у нее имеется первичная и вторичная обмотки, намотанные на железный сердечник. Соответственно, при прохождении тока через первичную обмотку в катушке генерируется ток. При размыкании цепи в первичной обмотке (это функция прерывателя) магнитное поле исчезает, но силовые линии направлены на вторичную обмотку, где и возникает ток с высоким (до 25 000 вольт) напряжением. В то же время в первичной обмотке возникает ток до 300 вольт, он имеет определение как «ток самоиндукции». Этот ток и вызывает искры и обгорание контактов прерывателя. Таким образом, величина вторичного напряжения находится в прямой зависимости от собственно величины магнитного поля, а также степени интенсивности уменьшения тока в первичной обмотке катушки зажигания. Для того, чтобы повысить вторичное напряжение и уменьшить степень обгорания контактов прерывателя, подключают конденсатор (параллельно контактам). Таким образом, в процессе размыкания контактов при самом минимальном зазоре идет подзарядка конденсатора. Разрядка же конденсатора происходит через первичную обмотку, через создание импульса тока обратного напряжения. Это спо­собст­ву­ет исчезновению магнитного поля и ведет к заметному росту вторичного напряжения. Совершенно очевидно то, что для каждой системы зажигания подбирается свой конденсатор. Как правило, емкость конденсаторов находится в диапазоне от 0,17 до 0,35 микро Фарад. К примеру, в отечественных «Жигулях» емкость конденсатора, обес­пе­чи­ва­ю­щая рабочую частоту тока в 50-1000 Герц, равна 0,2-0,25 микро Фарад. При нормальном функционировании системы зажигания вторичное напряжение должно возрастать с увеличением величины зазора между электродами свечи и с увеличением давления в камере сгорания. Нормальным при контактной системе считается вторичное напряжение величиной от 8 до 12 кВ, однако, для надежности системы этот показатель увеличивают до 16-25 кВ. Этот почти двукратный запас предназначен для того, чтобы перекрыть возможные изменения в работе самой системы зажигания (к примеру, изменения зазора между электродами) или же изменения в составе рабочей смеси, поступающей в двигатель. Обеднение смеси ведет к необходимому повышению напряжения до 20 кВ. Но как ни старались разработчики полностью избежать искры на контактах, а значит и их подгорания, им это не удалось. Единственный вариант уменьшить этот эффект (кроме установки конденсатора) – соблюдение минимального зазора в диапазоне от 0,3 до 0,4 миллиметра.

В отечественных автомобилях ВАЗ зазор варьирует от 0,35 до 0,45 миллиметра, а это отвечает углу 52-58 градусов при замкнутых контактах. Если этот угол увеличить (или уменьшить), уменьшается вторичное напряжение, и искрят не только контакты, но и бегунки, а значит идет снижение качества искры и двигатель теряет свою мощность. С технической точки зрения надежность системы зажигания, проявляющаяся в сгорании смеси в камере сгорания, зависит от ряда факторов. Это энергия, которой обладает искра, время, которое искра существует, форма самой искры, ее длина и даже число искр на единицу площади, но одной из самых важных характеристик определяющих все вышеизложенные показатели, является вторичное напряжение. Чем выше этот показатель, тем меньше система зависит от состава смеси и степени чистоты электродов свечи.
Устройство контактной системы зажигания
В устройстве контактной системы зажигания можно выделить следующие эле­мен­ты:
— аккумуляторная батарея ( см. устройство автомобильного аккумулятора );
— механический распределитель (ток высокого напряжения);
— механический прерыватель (ток низкого напряжения);
— замок зажигания;
— катушка зажигания ( см. катушка зажигания двигателя );
— свечи зажигания ( см. свечи зажигания для двигателя );
— центробежный регулятор опережения зажигания;
— вакуумный регулятор опережения зажигания;
— высоковольтные провода;

Читайте также:  Измерение отверстий

Распределитель необходим для раздачи тока на свечи цилиндров дви­га­те­ля. Конструкция распределителя: ро­тор и крышка, в которой размещены контакты. Напряжение от катушки по­да­ет­ся сначала на центральный контакт, а затем через боковые контакты пос­ту­па­ет на свечи.
Прерыватель нужен для разъ­е­ди­не­ния цепи низкого напряжения. Во вторичной цепи катушки зажигания при осуществлении разъединения контактов наводится высокое напряжение. Чтобы предотвратить обгорание контактов пре­дусмотрен конденсатор, раз­ме­ща­е­мый параллельно контактам.
Предназначение катушки зажигания — ток низкого напряжения с ее помощью пре­об­ра­зу­ет­ся в ток высокого напряжения. Также она имеет обмотку высокого напряжения и низ­ко­го.
Распределитель, прерыватель тока размещены в одном корпусе. Их приводит в работу коленвал двигателя. Устройство подобного типа получило название «трамблер».
Предназначение вакуумного регулятора — изменение угла опережения в результате изменений нагрузки на двигатель, которая определяется расположением педали газа. Регулятор соединяется с полостью за дросселем и меняет угол опережения в зависимости от уровня (степени) разряжения.
Угол опережения зажигания — величина угла поворота коленвала, при котором на свечи зажигания производится подача тока. Для обеспечения полного сгорания топливной смеси зажигание осуществляется с опережением.
Предназначение центробежного регулятора — в зависимости от числа оборотов коленвала двигателя обеспечивает смену угла опережения. Регулятор представляет собой два грузика, которые оказывают воздействие на пластину с размещенными на ней кулачками прерывателя (пластина сама по себе подвижна). Угол опережения устанавливается за счет положения «трамблера» двигателя.
Функция свечи зажигания – обеспечение воспламенения топливной смеси.
Назначение высоковольтных проводов — по ним осуществляется подача тока от катушки к распределителю, а далее на свечи зажигания.

Работа контактной системы зажигания
Рассмотрим работу контактной системы зажигания. При замкнутом контакте пре­ры­ва­те­ля ток низкого напряжения нап­рав­ля­ет­ся по первичной обмотке катушки. При разъединении контактов во вторичной обмотке ток низкого напряжения ин­ду­ци­ру­ет­ся в ток высокого напряжения, ко­то­рый далее по высоковольтным про­во­дам направляется на крышку ме­ха­ни­чес­ко­го распределителя тока, а уже от нее разделяется по свечам зажигания с не­ко­то­рым углом опережения.
При большем количестве обо­ро­тов коленвала двигателя, обороты рас­пред­ва­ла также увеличиваются. Грузики центробежного регулятора расходятся под воз­дейст­ви­ем центробежной силы, перемещают передвижную пластину с кулачками. Разъе­ди­не­ние контактов прерывателя осуществляется ранее, при этом угол опережения становится больше. При уменьшении оборотов коленвала двигателя происходит уменьшение угла опе­ре­же­ния.
Последующее продолжение системы зажигания контактного типа — контактно-тран­зис­тор­ная система зажигания. В данном случае в цепи первичной обмотки катушки ис­поль­зу­ет­ся транзисторный коммутатор, управление которым производится контактами прерывателя. В подобной системе за счет использования транзисторного коммутатора сила тока в цепи уменьшена, в результате чего срок эксплуатации контактов прерывателя увеличен.
Частые неисправности контактной системы зажигания
1. Между электродами свечей нет искры
Возможные причины:
— в цепи низкого напряжения не­дос­та­точ­ный контакт проводов или вообще их обрыв;
— контакты прерывателя обгорели, между ними отсутствует зазор;
— поломка катушки зажигания, ро­то­ра, конденсатора, крышки распределителя, высоковольтных проводов, а также самой свечи.
Методы устранения поломки:
— проверка цепи высокого и низкого напряжения;
— регулирование зазора контактов прерывателя;
— произведение замены неисправных компонентов системы зажигания.
2. Двигатель работает не на полную мощность или с постоянными перебоями
Возможные причины:
— свеча зажигания вышла из строя;
— между электродами свечей, в контактах прерывателя нарушен не­об­хо­ди­мый зазор;
— повреждена крышка рас­пре­де­ли­те­ля, ротор;
— произведена неверная установка угла опережения зажигания.
Методы устранения поломки:
— регулирование первоначального угла опережения;
— замена неисправных элементов;
— установление между электродами свечей, в контактах прерывателя необходимых зазоров.

Контактно-транзисторная система зажигания
В контактно-транзисторной системе зажигания основным компонентом является транзистор, благодаря применению которого новая схема имеет намного лучшие ха­рак­те­рис­ти­ки в сравнении со стандартной системой зажигания. По причине использования тран­зис­то­ра в системе зажигания появился новый узел — коммутатор.
Главная отличительная черта транзистора — это то, что ток небольшой величины, который направлен в базу (на управление), дает возможность управлять большим по ве­ли­чи­не током, проходящим через устройство.
Контактно-транзисторная система зажигания на первый взгляд незначительно от­ли­ча­ет­ся от классической системы зажигания, имеет тот же принцип работы, но все-таки приобрела некоторые характеристики, которые недоступны стандартной системе за­жи­га­ния. Перед тем, как давать оценку преимуществам и недостаткам, которые присущи контактно-транзисторной системе зажигания, нужно разобрать отличия в работе от стан­дарт­ной системы зажигания ( см. система зажигания двигателя ).
Основным отличием контактно-транзисторной системы зажигания является то, что воздействие прерывателя осуществляется на базу транзистора, а не на бобину. В остальном контактно-транзисторная система зажигания работает аналогично стандартной системе зажигания. При остановке тока в первичной обмотке бобины во вторичной обмотке происходит настройка высоковольтного напряжения. Не обращая внимания на элементы внутренней конструкции коммутатора, а также его подключения, необходимо отметить, что схема зажигания транзисторного типа даже в подобном упрощенном виде имеет следующие положительные характеристики: управление контактно-транзисторным способом про­цес­са­ми, которые происходят в катушке зажигания, дают возможность повысить значение тока в первичной обмотке, в результате чего можно:
— увеличить вторичное напряжение;
— сделать больше зазор (промежуток) между электродами свечи;
— улучшить и сделать наиболее устойчивым процесс искрообразования;
— улучшить при пониженной температуре запуск двигателя;
— увеличить число оборотов двигателя;
— увеличить мощность двигателя.
Контактно-транзисторная схема подобного типа требует применения катушки за­жи­га­ния с индивидуальной первичной, а также вторичной обмоткой.
Контактно-транзисторная система зажигания дает возможность уменьшить в зна­чи­тель­ной степени нагрузку на контакты прерывателя, в результате значение протекающего через них тока намного меньше, вследствие чего контакты подгорают меньше. Данный факт характеризует повышение надежности системы в целом.
Но, не смотря на множество положительных характеристик, контактно-тран­зис­тор­ной системе зажигания присущи и собственные недостатки, которые вызваны применением прерывателя (система с началом работы формирует искру, когда цепь протекания тока в обмотке бобины контактно разрывается). Величина тока, который поступает в базу транзистора, в зна­чи­тель­ной степени оказывает влияние на его работу, и снижение тока по причине качества кон­так­тов сказывается на эксплуатационных характеристиках контактно-транзисторной системы зажигания в целом.

Контактная система зажигания

Смотрите также

Ошибка p0351 p0352 p0353 p0354 — что значит

Замена и ремонт модуля зажигания Опель двигателя Z18XE

Проверка зажигания осциллографом

Диагностика системы зажигания

Как найти искру?

Система зажигания бензинового двигателя предназначена для воспламенения воздушно-топливной смеси. Возгорание этой смеси происходит благодаря искре.

В зависимости от того каким способом происходит управления процессом, систему зажигания разделяют на 3 типа:

В контактной системе управление накапливанием и распределением искры по цилиндрам осуществляется устройством механического типа — прерыватель-распределитель (трамблер).

В бесконтактной системе зажигания такую функцию выполняет транзисторный коммутатор.

При электронной системе зажигания распределением электрической энергии управляет электронный блок управления (ЭБУ).

Схема контактной системы зажигания

  • Замок зажигания. Замок зажигания обычно располагается на рулевой колонке или панели управления. Он контролирует протекание тока между аккумулятором и системой зажигания.
  • Аккумулятор. Когда двигатель не работает, источником электричества является аккумулятор. Он также дополняет электричество, вырабатываемое генератором,если тот выдает менее 12 вольт.
  • Распределитель. Распределитель направляет поток тока высокого напряжения от катушки через ручку распределителя зажигания по очереди к каждой из свечей зажигания.
  • Конденсатор. На корпусе распределителя зажигания крепится устройство под названием конденсатор. Оно обеспечивает отсутствие искры между разомкнутыми контактами прерывателя, что привело бы к обгоранию поверхности контактов.
  • Свеча зажигания. Ток высокого напряжения проходит по центральному электроду свечи. Затем, в зазоре между центральным и боковым электродами образуется искра, поджигающая топливную смесь в цилиндре.
  • Привод. Обычно распределитель приводится напрямую от распредвала. Скорость его вращения составляет 1/2 скорости вращения коленвала.
  • Катушка. Катушка состоит из металлического корпуса, в котором находятся 2 изолированных обмоточных провода, намотанных на сердечник из мягкой стали. Сжатие магнитных полей вокруг первичной обмотки создает во вторичной обмотке ток высокого напряжения, который через распределитель идет к свечам зажигания.

Принцип работы контактной системы зажигания

Принцип работы контактной системы заключается в осуществлении сбора и преобразования катушкой зажигания низкого напряжения (12V) электросети авто у высокое напряжение (до 30 тыс.вольт), после чего осуществлять передачу и распределение напряжения к свечам зажигания, дабы в нужный момент создать искрообразование на свече. Перераспределение большого напряжения по цилиндрам производится через контакты.

Читайте также:  Льготы при страховании ОСАГО

Механическим прерывателем осуществляется непосредственное управление процессом накопления энергии (первичного контура) и замыкание/размыкание питания первичной обмотки.

Использование такого вида зажигания осуществляется на классических отечественных авто и некоторых старых иномарках.

Неисправности контактной системы зажигания

1. Нет искры на свечах

Возможные причины:

  • плохой контакт или его обрыв в цепи низкого напряжения;
  • недостаточный зазор между контактами прерывателя (обгорают);
  • выход из строя катушки зажигания, конденсатора, крышки распределителя (трещины или обгорание), пробой ВВ проводов или самих свечей.

Методы устранения поломки:

  • проверка цепей высокого и низкого напряжения;
  • регулирование зазора контактов прерывателя;
  • произведение замены неисправных элементов системы зажигания.

2. Двигатель работает с перебоями

Возможные причины:

  • выход из строя свечи;
  • нарушение зазора между электродами свечи или в контактах прерывателя;
  • повреждена крышка распределителя или его ротор;
  • неправильно установлен или сбился угол опережения зажигания.

Методы устранения поломки:

  • проверка и регулировка угла зажигания;
  • замена неисправных элементов;
  • установка требуемых зазоров на свечи и контактах прерывателя.

Контактная система зажигания

Контактная система зажигания служит для воспламенения рабочей смеси в цилиндрах бензинового двигателя внутреннего сгорания. Она должна обеспечивать полное сгорание топливовоздушной смеси в цилиндрах.

Контактная система зажигания устройство.

Контактная система зажигания состоит из катушки зажигания, трамблёра, свечей зажигания и высоковольтных проводов.

Контактная система зажигания принцип работы.

Генератором высоковольтных импульсов является катушка зажигания, которая работает по принципу повышающего трансформатора. Она соединена с контактами прерывателя. При замкнутом состоянии его контактов, по первичной катушке протекает ток, создавая магнитное поле, силовые линии которого пронизывают вторичную обмотку.

После размыкания контактов магнитное поле пропадает, что приводит к появлению тока индукции во вторичной обмотке, равному 16 -18 кВ. В первичной катушке в этот момент образуется ток самоиндукции, равный примерно 300В, направленный в противоположную сторону от прерываемого тока.

Контактная система зажигания отчего зависит вторичное напряжение

Наличие и сила вторичного напряжения зависит от силы и скорости уменьшения тока самоиндукции в первичной обмотке. Именно ток, возникающий в первичной цепи катушки вызывает, искрение и подгорание контактов прерывателя. Для уменьшения этого эффекта, параллельно контакта подключается конденсатор, который заряжается в момент разрыва контактов и разряжается при появлении тока самоиндукции, ускоряя процесс его угасания.

Конденсатор подбирается для системы зажигания индивидуально для каждого типа двигателя. Его ёмкость обычно находятся в диапазоне 0,17 – 0,35мкФ и любое отклонение приводит к снижению вторичного напряжения.

Для воспламенения рабочей смеси достаточно вторичное напряжения равного 8 – 12 к В. Так как при распределении высокого напряжения и при протекании его по проводам и свечам существуют потери, то для надёжной работы системы вторичное напряжение должно быть 16 – 25 к В. Кроме того повышенное напряжение необходимо для воспламенения бедной смеси при неисправности топливной системы.

Ещё на вторичное напряжение влияет время замкнутого и разомкнутого состояния контактов. Эти величины зависят от профиля кулачка прерывателя и величины зазора и подбираются, как и конденсаторы индивидуально для каждого типа двигателя.

Во время эксплуатации при изменении зазора или износе кулачка происходит снижение вторичного напряжения. При уменьшении зазора и как следствие увеличении угла замкнутого состояния контактов, увеличивается искрение и подгорание контактов прерывателя, а так же медленно исчезает ток самоиндукции.

При увеличенном зазоре уменьшается угол замкнутого состояния, что приводит к снижению силы тока первичной обмотке, хотя и уменьшает искрение на контактах.

Вторичное напряжение по высоковольтному проводу передаётся на центральный вывод распределителя зажигания. Ротор (бегунок) распределителя соединён с валом прерывателя через центробежный регулятор опережения зажигания и при вращении соединяет центральный вывод с боковыми электродами, которые соединены со свечами. Центральный вывод распределителя соединён с бегунком через угольный электрод, ток с которого стекает с его бокового контакта на боковые электроды крышки, а с них по высоковольтным проводам к свечам зажигания.

Для снижения потерь тока между бегунком и боковыми электродами зазор между ними всего несколько микрон, поэтому в процессе эксплуатации не стоит скоблить и зачищать боковые контакты, что значительно увеличит зазор и снижение вторичного напряжения.

Контактная система зажигания недостатки.

Контактная система зажигания имеет ряд недостатков. Самый большой из них подгорание контактов, для предотвращение которого необходимо снижение тока первичной обмотки катушки. По этой причине при контактной системе зажигания имеется ограничение вторичного напряжения. Кроме этого при повышении числа оборотов происходит снижение вторичного напряжения, так как снижается время замкнутого состояния контактов. По этой же причине снижается вторичное напряжение при увеличении числа цилиндров. В процессе развития эти недостатки устранялись в других системах, контактно-транзисторной и бесконтактной.

Система зажигания

Свеча зажигания бензинового двигателя:
1 — контактная гайка;
2 — оребрение изолятора (барьеры для тока утечки);
3 — контактный стержень;
4 — керамический изолятор;
5 — металлический корпус;
6 — токопроводящий стеклогерметик;
7 — уплотнительное кольцо;
8 — теплоотводящая шайба;
9 — центральный электрод;
10 — тепловой конус изолятора;
11 — рабочая камера;
12 — боковой электрод «масса»;
h — искровой зазор

Работоспособность бензинового двигателя зависит не только от своевременной подачи в его цилиндры топливно-воздушной горючей смеси и последующего удаления продуктов сгорания, но и воспламенения в нужный момент горючей смеси от искры с помощью системы зажигания. Искра проскакивает между электродами свечи зажигания. Свеча вворачивается в резьбовое отверстие, выполненное в головке блока.
Свечи зажигания за многие годы своего существования принципиально мало изменились, но за счет применения новейших материалов и современных технологий стали более надежными и долговечными. Некоторые свечи с платиновыми электродами могут прослужить до 100 тыс. км пробега автомобиля.

Рабочая часть свечи зажигания с платиновыми электродами

Для того чтобы между электродами свечи зажигания проскочила искра, на нее нужно подать высокое напряжение (не менее 20 000 В). На автомобилях, в которых используются источники электрического тока с напряжением 12 В, для получения высокого напряжения применяется катушка зажигания — трансформатор с двумя обмотками (первичной и вторичной), отличающимися числом витков.

Конструкция катушки зажигания:
1 — крышка;
2 — контактное гнездо;
3 — винт;
4 — вывод низкого напряжения;
5 — уплотнительная прокладка;
6 — кольцевой магнитопровод;
7 — первичная обмотка;
8 — вторичная обмотка;
9 — фарфоровый изолятор;
10 — кожух катушки;
11 — трансформаторное масло;
12 — сердечник;
13 — картонная прокладка;
14 — контактная пружина

Катушка зажигания имеет внутренний сердечник. Вторичная обмотка, имеющая большее число витков, намотана вокруг сердечника. Один ее конец соединен с центральным выводом катушки, а второй — с низковольтной клеммой. Первичная обмотка (с меньшим числом витков) намотана поверх вторичной, и ее выводы соединены с низковольтными клеммами.
На вторичной обмотке катушки зажигания высокое напряжение возникает после того, как через первичную обмотку пройдет импульс тока низкого напряжения.

Конструкция датчика-распределителя зажигания:
1 — корпус;
2 — грузик центробежного регулятора;
3 — винт крепления подшипника;
4 — вакуумный регулятор;
5 — пружина вакуумного регулятора;
6 — диафрагма;
7 — штуцер;
8 — магнитопровод ротора;
9 — постоянный магнит;
10 — ротор;
11 — крышка;
12 — помехоподавительный резистор;
13 — выводы;
14 — центральный контакт;
15 — бегунок;
16 — фильц;
17 — винт крепления ротора;
18 — обмотка статора;
19 — винт крепления статора;
20 — статор;
21 — магнитопровод обмотки статора;
22 — опора статора;
23 — подшипник;
24 — пружина грузика;
25 — упорные шайбы;
26 — втулка;
27 — валик;
28 — пластина октан-корректора;
29 — шайба;
30 — пружинное кольцо;
31 — штифт;
32 — муфта привода

Момент опережения зажигания является весьма важным параметром и должен регулироваться в соответствии с изменениями оборотов и нагрузки двигателя. На первых автомобильных двигателях опережение зажигания регулировалось вручную, для чего на приборном щитке автомобиля располагалась специальная рукоятка. Затем на смену ручному регулятору пришел распределитель зажигания.
Под крышкой распределителя, в которую входит один высоковольтный провод от катушки зажигания и выходит несколько проводов, по одному к каждой свече зажигания, расположен центробежный механизм. В этом механизме имеется два грузика, уравновешенные пружинами, которые расходятся при вращении вала распределителя и увеличивают угол опережения зажигания при увеличении оборотов двигателя путем поворота опорной пластины, на которой расположены контакты прерывателя системы зажигания. В дополнение к этому устанавливается вакуумный регулятор, который изменяет момент зажигания в соответствии с нагрузкой (чем выше нагрузка, тем ниже давление во впускном трубопроводе).

Схема контактной системы зажигания:
G — источник энергии (генератор или аккумуляторная батарея);
С1 — конденсатор;
1 — прерыватель;
2 — катушка зажигания;
3 — распределитель зажигания;
4 — искровые свечи

Читайте также:  Назначение тормозной системы

Такая конструкция просуществовала довольно долго. Со временем, механическую контактную систему зажигания заменили на более надежную, бесконтактную.

118. Бесконтактная система зажигания

В бесконтактной системе распределитель зажигания заменен на датчик-распределитель и коммутатор. Датчик-распределитель выдает управляющие импульсы низкого напряжения и распределяет импульсы высокого напряжения по отдельным свечам зажигания. Работа бесконтактного датчика основана на использовании эффекта Холла. В этой системе еще существовали механические детали, которые не обеспечивали высокой надежности.

Индивидуальная катушка зажигания:
1 — печатная плата;
2 — задающий каскад;
3 — диод EFU;
4 — элемент вторичной обмотки;
5 — провод вторичной обмотки;
6 — контактная металлическая пластина;
7 — стержень высокого напряжения;
8 — разъем первичной цепи;
9 — провод первичной обмотки;
10 — I-образный сердечник (внутренний);
11 — постоянный магнит;
12 — о-образный сердечник (внешний);
13 — пружина;
14 — силиконовая изолирующая оболочка

В современных двигателях механический распределитель уступил место электронным системам. Сейчас его функцию выполняют или отдельные электронные модули, или, чаще, электронный блок управления. Катушки зажигания индивидуальные для каждого цилиндра, иногда для пары цилиндров. Это позволяет обойтись без высоковольтных проводов, повысить напряжение и увеличить надежность системы зажигания. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Cодержание вредных компонентов в отработавших газах при этом несколько снижается.

Виды, устройство и принцип работы системы зажигания

Система зажигания двигателя — это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого напряжения для формирование искры, воспламеняющей топливовоздушную смесь, в точно определенный момент времени. Это обеспечивает правильный режим работы мотора, а потому от исправности системы зажигания зависит расход топлива, мощность и безопасность движения автомобиля.

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:

  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Характерные особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом — замыканием и размыканием контактов цепи прерывателем-распределителем.

Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания — определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс.

В чем отличия контактно-транзисторной системы зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика.

В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом — отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Ссылка на основную публикацию