Датчики автомобильных электронных систем

Ремонт и техническое обслуживание автомобилей

Диагностика датчиков электронных систем управления

Общие сведения о датчиках ЭСУ автомобилей

Электроника стремительно врывается в конструкцию автомобилей, занимая важное место в управлении работой сложных агрегатов, устройств и систем автомобиля. Благодаря электронным системам управления (ЭСУ) повышается безопасность, экономичность, надежность и комфортабельность эксплуатации автомобильного транспорта, и, что немаловажно, отстранение человека от управления элементами конструкции автомобиля, требующих быстроты и правильность принятия решений и действий.
Электронный мозг автомобиля, как и любой другой компьютер, выполняет эту задачу лучше и быстрее любого человеческого гения.

Для того, чтобы электронный мозг автомобиля мог принять наиболее оптимальный вариант решения текущей или внезапно возникающей задачи, он должен иметь своеобразных осведомителей, выполняющих функции «органов чувств» компьютера.
Такими «осведомителями» в электронной начинке автомобиля являются многочисленные и разнообразные датчики, поставляющие электронному блоку управления («мозгу») информацию о текущем состоянии отдельных параметров автомобиля, элементов его конструкции и систем.

При этом текущее состояние механизмов и систем машины непосредственно может быть оценено только физическими параметрами – температурой, давлением, объемом, массой, положением в пространстве, вибрацией, скоростью и т. п.
Так, например, температура двигателя, частота вращения коленчатого вала и его положение в пространстве или скорость автомобиля – физические параметры, и никакая компьютерная программа не способна определить их существенное значение для анализа и корректировки управляющих сигналов (компьютерных команд).

Электронный блок управления, как и любой компьютер, способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т. п. Поэтому ЭБУ необходимы «переводчики», способные преобразовать физические величины в величины электрические, пригодные для обработки в блоке управления в соответствии с заложенной в него программой.

Датчики являются важнейшими элементами любой электронной системы управления. Они позволяют преобразовывать любой физический параметр машины, механизма, системы или рабочего тела в электрический сигнал, который понятен компьютеру, т. е. электронному блоку управления (ЭБУ).

Датчик – это элемент электронной системы управления, предназначенный для преобразования физических величин, характеризующих работу объекта или системы, в электрические величины, пригодные для обработки электронным блоком управления.

Совокупность датчиков электронной системы обычно называют датчиковой аппаратурой.

Физическими параметрами элемента конструкции или рабочего тела можно назвать температуру, давление, концентрацию, влажность, пространственное положение, объемное или массовое количество воздуха, вибрацию.

Электрические параметры, которыми оперируют датчики для информирования анализирующих и управляющих элементов электронной системы (для автомобилей – ЭБУ) – напряжение, ток, частота.

Конструктивно датчики всегда имеют как минимум две части – чувствительный элемент, воспринимающий входное неэлектрическое воздействие, и преобразователь неэлектрического сигнала от чувствительного элемента в выходной электрический сигнал. При этом выходной сигнал может быть предварительно обработан датчиком (в зависимости от его интеграции), либо передаваться в первозданном виде для анализа в ЭБУ.

Классификация датчиков, используемых в машиностроении и другой технике, в т. ч. электронной, приведена на этой странице.

Требования, предъявляемые к датчикам

К датчикам, используемым в электронных системах управления, предъявляются следующие требования:
– высокая надежность;
– необходимый диапазон измерений;
– статическая характеристика близкая к линейной;
– достаточная чувствительность и стабильность;
– погрешность в пределах, не превышающих влияние на работоспособность системы;
– отсутствие обратного воздействия на измеряемый объект или параметр.

Датчики автомобильных ЭСУ

Как упоминалось выше, любой автомобильный датчик подключаются к блоку управления (ЭБУ) или средствам индикации для передачи сведений (информации) о параметрах контролируемой данным датчиком среды или параметра.

Датчики современных автомобильных электронных систем автоматического управления (ЭСАУ) преобразуют информацию о значениях контролируемых неэлектрических параметров в электрический сигнал – напряжение, ток, частоту, фазу и т. д. Эти сигналы преобразуются в цифровой код в ЭБУ и обрабатываются в соответствии с заложенным в него программным обеспечением.
По результатам обработки сигналов с датчиков электронный блок управления (ЭБУ) управляет через исполнительные механизмы (реле, соленоиды, электродвигатели) объектом – узлом, механизмом, системой или всей машиной.

Так, например, в двигателе автомобиля датчики используются для измерения температур и давлений различных жидких и газовых сред – температуры всасываемого воздуха, абсолютного давления во впускном коллекторе, давления масла, температуры охлаждающей жидкости, давления топлива в магистралях и т. п.
Также практически все современные двигатели внутреннего сгорания (ДВС) автомобилей снабжены датчиками детонации, нагрузки двигателя, содержания кислорода в выхлопных газах и др.

Практически все движущиеся части автомобиля снабжены датчиками скорости или положения, например, датчик скорости автомобиля, положения дроссельной заслонки, положения коленчатого (распределительного) вала, положения и скорости вращения вала в коробке переключения передач (КПП), положения клапана рециркуляции выхлопных газов и др.

В результате развития систем активной безопасности многие автомобили оснащаются не только антиблокировочной системой тормозов, но и более сложной системой управления курсовой устойчивостью и стабильностью движения автомобиля.
Для таких систем кроме датчиков определения скорости вращения колес и давления в тормозных магистралях необходимы датчик скорости вращения автомобиля вокруг вертикальной оси, датчик поперечного ускорения автомобиля, датчик положения рулевого колеса.

Для обеспечения пассивной безопасности водителя и пассажиров необходимы датчики удара и акселерометры. Оптимальную работу таких систем обеспечивают датчик занятости сиденья переднего пассажира и его веса, датчики застегнутых ремней безопасности, датчики положения сидений. Эта информация используется для оптимального надувания подушек безопасности.

Более дорогие автомобили оснащаются датчиками для предупреждения столкновений (например, радарные), датчиками определения близости других автомобилей, датчиками высоты кузова по отношению к шасси, давления в шинах и многими другими.

В системе управления климатом в салоне автомобиля (климат-контроль) используются различные датчики для определения давления и температуры хладагента, температуры воздуха в салоне и за бортом, дождя и освещенности.

Это далеко не весь перечень существующих и используемых датчиков в современных автомобилях.
На рис. 2 показано характерное (классическое) расположение различных датчиков на легковом автомобиле. Конечно же, это лишь эталонная схема, и в зависимости от марки автомобиля, модели, года выпуска расположение датчиков может отличаться от классической схемы.

Рис. 2. Классическое расположение датчиков легкового автомобиля:

1 – датчик положения заслонок управляемого впускного коллектора; 2 – датчик тахометра; 3 – датчик положения распределительного вала (датчик фаз); 4 – датчик нагрузки двигателя; 5 – датчик положения коленчатого вала; 6 – датчик крутящего момента двигателя; 7 – датчик количества масла; 8 – датчик температуры охлаждающей жидкости; 9 – датчик скорости автомобиля; 10 – датчик давления масла; 11 – датчик уровня охлаждающей жидкости; 12 – радарный датчик системы торможения; 13 – датчик атмосферного давления; 14 – радарный датчик системы предотвращения столкновений; 15 – датчик скорости вращения ведущего вала КПП; 16 – датчик выбранной передачи в КПП; 17 – датчик давления топлива в рампе форсунок; 18 – датчик скорости вращения рулевого колеса; 19 – датчик положения педали; 20 – датчик скорости вращения автомобиля вокруг вертикальной оси; 21 – датчик противоугонной системы; 22 – датчик положения сиденья; 23 – датчик ускорения при фронтальном столкновении; 24 – датчик ускорения при боковом столкновении; 25 – датчик давления топлива в баке; 26 – датчик уровня топлива в баке; 27 – датчик высоты кузова по отношению к шасси; 28 – датчик угла поворота рулевого колеса; 29 – датчик дождя или тумана; 30 – датчик температуры охлаждающего воздуха; 31 – датчик веса пассажира; 32 – датчик кислорода; 33 – датчик наличия пассажира на сиденье; 34 – датчик положения дроссельной заслонки; 35 – датчик пропусков воспламенения; 36 – датчик положения клапана рециркуляции выхлопных газов; 37 – датчик абсолютного давления во впускном трубопроводе; 38 – датчик азимута, датчик уровня тормозной жидкости; 39 – датчик скорости вращения колес; 40 – датчик давления в шинах.

Описание некоторых из этих датчиков можно ознакомиться здесь.
В настоящей статье дается более полная характеристика некоторых датчиков автомобильных ЭСУ, а также методы диагностирования и проверки этих датчиков с помощью средств диагностики – сканеров или адаптеров, мультиметра и других приборов.

Цикл статей включает описание основных методов диагностирования следующих датчиков ЭСУ автомобилей:

Кроме рассмотренных в данном цикле статей датчиков ЭСУ иногда приходится диагностировать следующие датчики:

Датчик абсолютного давления (разрежения) во впускном коллекторе (ДАД) .
Выходной сигнал ДАД меняется от 4,5 В при 101 кПа (зажигание включено, двигатель не запущен, уровень моря) до 0,5 В при 20,1 кПа. При ненагруженном холостом ходе на уровне моря сигнал с ДАД составляет 1,5 В (40,4 кПа).
Этот датчик обычно используется в диагностических целях и как датчик нагрузки двигателя (ДНД).

Датчик температуры воздуха (ДТВ) .
Датчик температуры воздуха позволяет корректировать данные о количестве воздуха, поступившего в цилиндры (показания ДМРВ) с учетом его плотности, которая зависит от температурно-климатических условий, в которых работает двигатель.
Датчик выполнен на основе термистора с отрицательным температурным коэффициентом сопротивления. Размещен в системе подачи и очистки воздуха (в индукционном канале).
Рабочий диапазон температур — 40. 120 °С. При 30 °С выходное напряжение датчика 2,6 В.

Датчик скорости автомобиля (ДСА) .
Выдает импульсный сигнал с частотой, пропорциональной скорости автомобиля. Контроллер в ЭБУ двигателя использует сигнал от ДСА для управления коробкой передач и отключения топливоподачи при недопустимо высокой скорости автомобиля, а также для эффективного управления некоторыми электронными системами автомобиля (например, системой «стоп-старт»).

В заключение следует отметить, что работы по проверке работоспособности датчиков автомобильных электронных систем управления не регламентируются, т. е. не являются обязательными при выполнении планового технического обслуживания автомобилей, и проводятся лишь в случаях обнаружения соответствующих неисправностей.

INGENEROFF › Блог › Назначение и принцип работы датчиков на автомобилях.(не моё)

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ).

Датчик массового расхода воздуха предназначен для преобразования расхода воздуха, поступающего в двигатель, в напряжение постоянного тока. Информация датчика позволяет определить режим работы двигателя и рассчитать цикловое наполнение цилиндров воздухом на установившихся режимах работы двигателя, длительность которых превышает 0,1 секунды. Чувствительный элемент датчика построен на принципе терморезистивного анемометра и выполнен в виде платиновой нагреваемой нити. Нить нагревается электрическим током, а с помощью термодатчика и схемы управления датчика ее температура измеряется и поддерживается постоянной. Если через датчик поток воздуха увеличивается, то платиновая нить начинает охлаждаться, схема управления датчика увеличивает ток нагрева нити, пока температура ее не восстанавливается до первоначального уровня, таким образом величина тока нагрева нити пропорциональна расходу воздуха.

Вторичный преобразователь датчика преобразует ток нагрева нити в выходное напряжение постоянного тока.

С течением времени нить загрязняется, что приводит к смещению градуировочной характеристики датчика. Для очистки нити от грязи после выключения двигателя (при выполнении определенных условий) нить прожигается до 900—1000°C импульсом тока в течении 1 секунды. Формирует импульс управления прожигом блок управления.

Для промывки никак нельзя использовать кетоны и эфиры. По трём причинам:

1. Растворяют компаунд.
2. При высыхании очень сильно охлаждают кристалл. Он может “лопнутьтреснуть”.
3. Растворяют “маску” на кристалле(это отн. не страшно, но в центре кристалла есть полимерная плёнка в окошке, похоже из полиэтилентерефталата, на которой тоже маска и металл. напыление) Плёнке пофиг, но если маска смоется, плёнка деформируется и оторвётся.

— лазить туда спичкамизубочисками и прочими тампаксами
— промывать всякими разъедателями типа Виннса и Карбоклина.
— Большинство растворителей остаКарбовые очистители “Абро” и “Hi-Gear”.
— ВЭЛВовские аэрозоли содержат ацетон (про кетоны я уже сказал) и этиловый эфир, их не использовать.

В общем, что остаётся?
WD-40. Там соляра и тяжёлые жирные кислоты. Моют хорошо, но надолго оставляют плёнку. Её надо смывать. Смывать нужно спиртами (этил / метил / изопропил) в смеси с дистиллированной водой(20% воды), или этил / бутил / пропил — ацетатами(Ч.Д.А.). Они с водой нормально смешиваются (но хозтоварные грязные, и оставляют налёт). Думаю, что лучше кристалл поливать из шприца с тонкой иголкой. А сушить “родным” вентилятором, включив его с компа. Ну, по крайней мере, искусственной смертью он не умрёт, а от естественной никто не застрахован.:о) Хорошие результаты по промывке ДМРВ дает обычная промывка изопропиловым спиртом с предварительно разогретым, с помощью технического фена, до 60-70 градусов ДМРВ и промывочной жидкости.

✒ ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ (ДПДЗ)

Датчик положения дроссельной заслонки установлен сбоку на дроссельном блоке на одной оси с приводом дроссельной заслонки. Датчик положения дроссельной заслонки считывает показания с положения педали “газа”. Основной враг датчика положения дроссельной заслонки — мойщики двигателей. Срок службы датчика положения дроссельной заслонки совершенно непредсказуем. Нарушения в работе датчика положения дроссельной заслонки проявляются в повышенных оборотах на холостом ходу, в рывках и провалах при малых нагрузках.

Датчик детонации установлен на блоке двигателя между 2-м и 3-им цилиндрами. Существуют два типа датчика детонации – резонансный (бочонок) и широкополосный (таблетка). Датчик детонации разных типов не взаимозаменяемы. Датчик детонации — это надежный элемент, но требует регулярной чистки разъема. Принцип работы датчика детонации как у пьезо зажигалки. Чем сильнее удар, тем больше напряжение. Отслеживает детонационные стуки двигателя. В соответствии с сигналом датчика детонации контроллер устанавливает угол опережения зажигания. Есть детонация — более позднее зажигание. Отказ или обрыв датчика детонации проявляются в “тупости” мотора и повышенному расходу топлива.
Он представляет собой пустотелый шестигранный корпус с резьбовым выступом для вкручивания в ДВС. Внутри корпуса обычным винтиком прикручивается двухслойный пьезоэлемент, который и вырабатывает ЭДС при воздействии на него колебаний звуковой частоты через корпус датчика. Эти колебания с помощью пьезоэлемента преобразуются в аудиосигнал. Таким образом, с помощью ДД блок EFI “слышит”, что происходит в двигателе во время его работы. То есть, это своеобразный микрофон, а точнее, пьезокерамический звукосниматель (как на проигрывателях виниловых пластинок).

Корпус по край залит специальным компаундом, по ощущению напоминающий хрупкую крошащуюся искусственную резину. Этот компаунд (на форуме его называют “смолой”) не только защищает пьезоэлемент от воздействия окружающей среды, но еще и создаёт специфическую АЧХ (амплитудно-частотную характеристику) сигнала, так как спектр ДД должен лежать в области 1400-6000Гц с центральной частотой в районе 2700Гц (примерная частота детонации).

Если появляются детонационные процессы, то блок EFI автоматически изменяет угол опережения зажигания (УОЗ) до тех пор, пока детонационные процессы не сведутся к минимуму или вообще не ликвидируются. Таким образом, ДД является неотъемлемой частью цепей коррекции формирования и наиболее эффективного сжигания топливной смеси. Выход из строя ДД сопровождается появлением ошибки самодиагностики, детационными процессами в ДВС (при этом характерным так называемым “звоном пальцев”), худшей тягой, повышенным расходом топлива.

Читайте также:  Для чего нужна система зажигания?

✒ ДАТЧИК ДАВЛЕНИЯ МАСЛА

Давление масла в системе контролируется специальным датчиком, установленным в масляной магистрали. Электрический сигнал от датчика поступает к контрольной лампе на приборной панели. На автомобилях также может устанавливаться указатель давления масла.

Датчик давления масла может быть включен в систему управления двигателем, которая при опасном снижении давления масла отключает двигатель.

На современных двигателях устанавливается датчик контроля уровня масла и соответствующая ему сигнальная лампа на панели приборов. Наряду с этим, может устанавливаться датчик температуры масла.

✒ ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ (ДОЖ)

Датчик температуры охлаждающей жидкости установлен между головкой блока и термостатом. Датчик температуры охлаждающей жидкости имеет два контакта . Основное функциональное назначение датчика температуры охлаждающей жидкости — чем холоднее мотор, тем богаче топливная смесь. Конструктивно датчик температуры охлаждающей жидкости представляет собой термистор (резистор), сопротивление которого изменяется в зависимости от температуры. Типовые значения 100 гр. — 177 Ом, 25 гр. — 2796 Ом, 0 гр. — 9420 Ом, — 20 гр. — 28680 Ом. Температура охлаждающей жидкости влияет почти на все характеристики управления двигателем. Датчик температуры охлаждающей жидкости весьма надежен. Основные неисправности — нарушение электрического контакта внутри датчика, нарушение изоляции или обрыв проводов . Отказ датчика температуры охлаждающей жидкости — включение вентилятора на холодном двигателе, трудность запуска горячего мотора, повышенный расход топлива.

Датчик кислорода(лямбда зонд) установлен на приемной трубе глушителя. Серьезный, но весьма надежный электрохимический прибор. Задача датчика кислорода- определение наличия остатков кислорода в отработавших газах. Есть кислород — бедная топливная смесь, нет кислорода — богатая. Показания датчика кислорода используются для корректировки подачи топлива. Категорически запрещается использование этилированного бензина. Выход из строя датчика кислорода приводит к увеличению расхода топлива и вредных выбросов.

✒ ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА (ДПКВ)

Датчик положения коленвала предназначен для формирования электрического сигнала при изменении углового положения специального зубчатого диска, установленного на коленвале двигателя. Датчик положения коленвала установлен около шкива коленвала и считывает сигналы по рискам. Это основной датчик, по показаниям которого определяется цилиндр, время подачи топлива и искры. Конструктивно датчик положения коленвала представляет собой кусок магнита с катушкой тонкого провода. Очень вынослив. Датчик положения коленвала работает в паре с зубчатым шкивом коленчатого вала. Отказ датчика — остановка двигателя. В лучшем случае ограничение оборотов двигателя в районе 3500 — 5000 об/ми.

✒ ДАТЧИК ФАЗ (распредвала ДКВ)

Устанавливается только на 16 — ти клапанном двигателе. Информация используется для организации впрыска топлива в конкретный цилиндр. Отказ датчика переводит топливоподачу в попарно-параллельный режим, что приводит к резкому обогащению топливной смеси.
Датчик фаз устанавливается на двигателе в верхней части головки блока цилиндров за шкивом впускного распредвала. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра.

✒ РЕГУЛЯТОР ХОЛОСТОГО ХОДА (РХХ) (распредвала ДКВ)

является устройством, которое необходимо в системе для стабилизации оборотов холостого хода двигателя. РХХ представляет из себя шаговый электро-двигатель с подпружиненной конусной иглой. Во время работы двигателя на холостом ходу, за счет изменения проходного сечения дополнительного канала подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает, необходимое для его стабильной работы, количество воздуха. Этот воздух учитывается датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, контроллер осуществляет подачу топлива в двигатель через топливные форсунки. По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя и в
соответствии с режимом работы двигателя управляет РХХ, таким образом добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки.

На прогретом до рабочей температуры двигателе контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет РХХ увеличивает обороты и, таким образом, обеспечивает прогрев двигателя на повышенных оборотах коленвала. Данный режим работы двигателя позволяет начинать движение автомобиля сразу и не прогревая двигатель.
Регулятор холостого хода установлен на корпусе дроссельной заслонки и крепится к нему двумя винтами. К сожалению, на некоторых автомобилях головки этих крепежных винтов могут быть рассверлены или винты посажены на лак, что может значительно усложнить демонтаж РХХ для его замены или прочистки воздушного канала. В таких случаях редко удается обойтись без демонтажа всего корпуса дроссельной заслонки. РХХ является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода лампа “CHECK ENGINE” не загорается. Симптомы неисправностей РХХ во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа “CHECK ENGINE”. К неисправностям регулятора холостого хода можно отнести следующие симптомы:

— неустойчивые обороты двигателя на холостом ходу,
— самопроизвольное повышение или снижение оборотов двигателя,
— остановка работы двигателя при выключении передачи,
— отсутствие повышенных оборотов при запуске холодного двигателя,
— снижение оборотов холостого хода двигателя при включении нагрузки (фары, печка и т.д.).

Для демонтажа регулятора холостого хода необходимо при выключенном зажигании отключить его четырехконтактный разъем и отвернуть два крепежных винта. Монтаж РХХ производят в обратной последовательности. Кроме того, уплотнительное кольцо на фланце следует смазать моторным маслом.

Датчики систем управления двигателем

Датчиковая аппаратура – важная и неотъемлемая часть системы управления двигателем. Прежде чем начинать подробный разговор обо всем многообразии датчиков и методиках их диагностики, нужно ввести несколько фундаментальных понятий.

Что такое датчик, зачем он нужен, какую функцию выполняет?

Основным элементом системы управления двигателем является электронный блок управления (ЭБУ). Он способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т.п. Но параметры работы двигателя носят чисто физические характеристики. Чтобы сообщить их блоку управления, необходимо преобразовать физическую величину в величину электрическую, пригодную для обработки в блоке управления в соответствии с заложенной в него программой. Итак,

Датчик – это элемент системы управления двигателем, задача которого состоит в преобразовании физических величин, характеризующих работу двигателя, в электрические величины, пригодные для обработки электронным блоком управления.

Перечислим физические величины и явления, информация о которых необходима блоку управления:

  • температура;
  • давление;
  • частота вращения;
  • концентрация;
  • количество воздуха;
  • пространственное положение;
  • вибрация.

Перечисленную совокупность датчики преобразуют в электрические параметры:

Принцип диагностики датчиковой аппаратуры

Диагностика любого датчика ЭСУД сводится к проверке адекватности преобразования физического параметра в электрический параметр.

Необходимо установить заведомо известное значение параметра на входе датчика и проконтролировать его выходной сигнал при помощи мотортестера или сканера.

Простой пример: датчик абсолютного давления во впускном коллекторе. В качестве эталона можно использовать атмосферное давление, которое будет присутствовать во впускном коллекторе заглушенного двигателя. Проконтролировав отображаемое датчиком в этом состоянии давление при помощи сканера, можно сделать вывод о достоверности его показаний.

Приведенный пример весьма примитивен, он призван лишь продемонстрировать общий принцип диагностики датчиковой аппаратуры. В обучающем курсе “Диагностика датчиковой аппаратуры” методики проверки каждого типа датчиков описаны очень подробно.

Предположим, есть некий датчик, подключенный к ЭБУ, и есть необходимость оценить его работоспособность (см. рисунок). Рассмотрим классическую схему подключения датчиков к блоку.

С блока управления на датчик подается питающее напряжение 5 В и масса. Сигнал с датчика поступает в блок и обрабатывается им.

Для проверки исправности датчиков применяются два основных диагностических прибора: сканер и мотортестер.

Подключив сканер, диагност получает возможность «увидеть» сигнал датчика «глазами» блока управления. Для того чтобы оценить выходной сигнал датчика при помощи мотортестера, необходимо подключить его щупы к цепи датчика, как показано на рисунке: один к массе, другой к сигнальному проводу.

Работа сканером более проста и удобна, но не следует забывать, что обмен информацией между ЭБУ и сканером происходит отнюдь не мгновенно, и какие-то интересные моменты сигнала можно попросту не обнаружить. Помимо этого, сканер невозможно использовать на достаточно старых автомобилях, примерно до середины девяностых годов, вследствие низкого уровня интеллекта и быстродействия тогдашних блоков управления.

Напротив, мотортестер позволяет оценить сигнал датчика очень качественно и подробно, не пропустив ни малейшей детали, хотя трудоемкость его применения выше, чем у сканера. Обратите внимание на то, что щупы мотортестера правильнее всего подключать непосредственно к разъему датчика. Особенно это касается щупа массы: не следует присоединять его к первой попавшейся точке массы двигателя.

Краткие итоги

Датчик представляет собой преобразователь физического параметра в параметр электрический, пригодный для обработки в ЭБУ. Физическими параметрами можно назвать температуру, давление, концентрацию, пространственное положение, количество воздуха, вибрацию. Электрические параметры, с которыми оперируют датчики, это напряжение, ток, частота. Проверку датчиков можно выполнить двумя приборами: сканером, подключив его к ЭБУ, и мотортестером, подключив его щупы непосредственно к сигнальному и массовому выводам датчика.

Особенности электрического подключения датчиков к цепям ЭСУД

Каким образом датчики подключаются к блоку управления?

Схема подключения датчиков представляет собой очень важный момент. Обратимся к рисунку.

Существует так называемая «масса», или общий провод электропроводки автомобиля. Она объединяет металлические части кузова и двигателя и подключается к минусовой клемме аккумулятора. Большинству датчиков требуется подключение к массе в силу особенностей их работы. ЭБУ также подключается к массе, на рисунке это точка 1.

Рассмотрим, каким образом подключается масса датчиков. На первый взгляд, массу можно подключить к датчику в любой ближайшей точке двигателя или кузова (точка 2), а сигнальный вывод датчика подключить к одному из контактов в разъеме блока. Посмотрим на полученную схему критически.

Что получается?

А получается, что цепь датчика включает в себя участок кузова или двигателя автомобиля между точками 2 и 1. Одновременно с этим по кузову идут токи мощных нагрузок вроде ламп головного света, вентиляторов, электродвигателей стеклоочистителя и т.п. Получается, что по одному и тому же пути идут слабые токи датчика, содержащие полезную информацию, и большие токи мощных нагрузок. В итоге в цепи датчика возникают сильные помехи от электроприборов автомобиля и системы зажигания.

Такая ситуация совершенно недопустима, и подобное подключение массы датчиков (за редчайшим исключением) нигде не используется.

Куда же подключается масса датчиков? Она подключается непосредственно к блоку управления.

В такой ситуации цепь датчика оказывается не привязанной к цепи протекания токов нагрузок и сигнал датчика без помех и искажений поступает в ЭБУ. Сам блок, конечно же, подключен к массе автомобиля. Внутренняя структура ЭБУ, его характерные дефекты и методики ремонта изложены в обучающем курсе “Ремонт электронных блоков управления”.

Если открыть любую базу данных и посмотреть назначение выводов ЭБУ, то можно увидеть назначение выводов вроде «Масса датчика положения дроссельной заслонки», «Масса датчика абсолютного давления» и т.п. Отдельным выводом выполнена «Масса электронного блока управления». Вот это и есть точка подключения массы ЭБУ, а массы всех датчиков подключаются к ЭБУ отдельно, внутри него они соединяются вместе и подключаются к массе блока.

Убедиться в сказанном достаточно просто с помощью тестера: достаточно прозвонить цепь массы любого датчика на минусовую клемму аккумулятора, а затем, сняв разъем с ЭБУ, убедиться, что цепь разорвалась.

В качестве примера приведем часть схемы ЭСУД с блоком управления MR-140.

Несложно убедиться в том, что массы датчика температуры охлаждающей жидкости (Engine Coolant Temperature, ECT Sensor), датчика положения дроссельной заслонки (Throttle Position, TP Sensor), датчика температуры воздуха (Intake Air Temperature, IAT Sensor) объединены сборкой S101 и подключены к выводу М64 блока управления, обозначенному как вывод массы. В эту же точку подключены выводы массы и экранирующей оплетки датчика детонации (Knock Sensor). Массы датчиков давления в системе кондиционирования воздуха (Air Condition Pressure, ACP Sensor) и датчика неровной дороги (Rough Road Sensor) также объединены и подключены к выводу К34 электронного блока.

Есть два исключения из этого правила: резонансный датчик детонации конструкции GM, который применялся на первых системах управления ВАЗ, и однопроводной датчик концентрации кислорода. Но это исключения, а отнюдь не правило.

К сожалению, многолетняя практика диагностики двигателей дает право констатировать, что вышеизложенные факты понимают далеко не все специалисты автосервиса.

Приходилось видеть двигатели, в электропроводку которых было произведено вмешательство с целью создать более надежный контакт массы датчика расхода воздуха. При этом провод массы подсоединялся непосредственно к выводу датчика и к минусовой клемме аккумулятора. Такое решение совершенно недопустимо. Оно приводит к значительному повышению уровня помех в цепи датчика вследствие образования контура и даже может при определенных обстоятельствах вызвать выход ЭБУ из строя. Никакое изменение схемы подключения датчиков, никакое привнесение лишних проводов в ЭСУД недопустимо.

Существуют датчики, информацию с которых необходимо донести до ЭБУ максимально качественно, без помех. Примером может служить датчик положения коленчатого вала. В таком случае провода от датчика до ЭБУ заключают в экран, представляющий собой гибкую оплетку из алюминиевой фольги либо тонкого провода. Назначение экрана – защита цепи датчика от внешних электромагнитных помех. Сам экран также подключается к массовому проводу системы и обозначается на электрической схеме в виде пунктирного контура вокруг проводов. Примером такого подключения служит датчик детонации на рисунке выше.

Разновидности датчиков. Принцип работы и методики проверки

Если изучать датчиковую аппаратуру, опираясь на существующие руководства по ремонту той или иной марки автомобилей, то можно обнаружить, что в каждом руководстве используется один и тот же подход. Перечисляются датчики, входящие в состав описываемой системы управления, и озвучивается их назначение. Для другого двигателя и другой системы опять-таки перечисляются датчики и т.д.

В некоторых книгах датчики ЭСУД и контрольные датчики, необходимые, например, для работы панели приборов (датчик давления масла, уровня охлаждающей жидкости и т.п.) вообще свалены в одну кучу. Такой подход представляется неконструктивным и не отображающим истинной картины.

Читайте также:  Жесткость и вибрации при токарной обработке

Рассматривая датчиковую аппаратуру, мы будем применять другой метод подачи информации. Все датчики будут рассматриваться не по признаку наличия их на той или иной ЭСУД, а по принципу действия, по физическому явлению, лежащему в основе их функционирования.

Такой подход видится гораздо более правильным и доступным для понимания. Датчики одного и того же принципа действия используются в абсолютно разных узлах автомобиля, и для диагноста, усвоившего принцип их работы и методику диагностики, не составит труда проверить работоспособность любого из них.

Например, датчик уровня топлива, датчик расхода воздуха флюгерного типа, датчик положения клапана рециркуляции отработанных газов и датчик положения педали акселератора, несмотря на кажущуюся несхожесть, диагностируются абсолютно одинаково, по одному и тому же принципу.

Поэтому будем рассматривать не наборы датчиков для той или иной системы управления, а их типы, исходя из физического принципа функционирования. Для примера разберем датчики потенциометрического типа.

Датчики потенциометрического типа

Это один из самых несложных в понимании принципов действия и диагностики типов датчиков.

Что такое потенциометр?

Его смысл зашифрован в самом названии: это измеритель электрического потенциала. В электрических схемах потенциометр обозначается следующим образом: стандартное обозначение резистора, но со стрелкой, символизирующий подвижный контакт.

Если на верхний вывод потенциометра подать напряжение, скажем, 12 В, а нижний соединить с массой, то при перемещении полозка потенциометра напряжение между массой и сигнальным выводом будет изменяться от нуля до 12 В. Это в идеальном случае, в реальности же напряжение не будет доходить до нуля и до 12 В. Конструктивно датчик представляет собой резистивную дорожку в форме дуги или подковы, по которой перемещается ползунок. Один конец резистивной дорожки подключается к массе, на другой подается питающее напряжение. С ползунка снимается выходной сигнал.

Такой потенциометр использовался когда-то давно на радиоэлектронной аппаратуре для регулировки громкости звука: на него подавалось напряжение звуковой частоты, а с полозка оно снималось и шло на усилитель. В итоге, вращая ручку регулятора, можно было установить желаемый уровень громкости.

Где такой датчик можно применять в автомобиле?

Совершенно очевидно, его можно использовать там, где необходимо измерить пространственное положение какого-либо узла. Не важно, какого именно. Если узел подвижный, если он перемещается и занимает различные положения, а нам необходимо это положение определить, то практически повсеместно для этого используются датчики потенциометрического типа.

Классический пример датчика положения – указатель уровня топлива в баке. Поплавок с рычагом, установленный на шарнир и имеющий возможность перемещаться в одной плоскости. Рычаг соединен с полозком потенциометрического датчика. Напряжение с полозка подается на панель приборов и отклоняет стрелку указателя. Нужно отметить, что такая схема работы указателя уровня топлива уже весьма устарела и на большинстве современных автомобилей, оснащенных электронной панелью приборов, не применяется.

Где датчики такого типа используются на двигателе? Перечислим основные области применения:

  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик положения педали акселератора (ДППА);
  • датчик положения клапана рециркуляции отработанных газов;
  • датчик объемного расхода воздуха флюгерного типа;
  • датчик положения заслонок впускного коллектора.

Перечислено далеко не все. Одним словом, везде, где нужно иметь информацию о пространственном положении узла, применяются датчики потенциометрического типа.

Методы диагностики таких датчиков рассмотрим на примере датчика положения дроссельной заслонки. Он устанавливается на дроссельном узле и преобразует в напряжение текущее положение дроссельной заслонки. На датчик подается напряжение 5 В с ЭБУ, но конструктивно датчик выполнен таким образом, что напряжение на нем никогда не будет равно 0 или 5 В. Это сделано для того, чтобы ЭБУ мог контролировать цепь датчика и различать нулевое положение и короткое замыкание сигнальной цепи на массу либо напротив, положение максимального открытия дросселя и замыкание на питающее напряжение 5 В. Поэтому в реальности напряжение на датчике изменяется не от 0 до 5 В, а от 0.3..0.5 В до 4.5..4.7 В.

Проверить работоспособность датчика можно двумя способами:

  1. Сканером. Для выполнения проверки нужно подключить сканер, войти в режим «Поток данных» и найти в списке напряжение на датчике. Затем, медленно поворачивая дроссельную заслонку от закрытого до полностью открытого состояния, контролировать численное значение напряжения. Оно должно нарастать плавно, без падений до нуля или бросков до максимального значения. Как вариант, можно оценивать не напряжение, а рассчитанное блоком положение заслонки в процентах. Опять-таки, количество процентов должно расти плавно, без хаотических появлений 0% и 100%. Следует отметить, что вследствие конечной скорости обмена между ЭБУ и сканером при такой методике проверки возможен пропуск дефектного места на резистивной дорожке датчика.
  2. Мотортестером. Измерение выполняется в режиме самописца. Щупы мотортестера необходимо подключить к массе и сигнальному выводу датчика. Включить зажигание. Плавно перемещая дроссельную заслонку, наблюдать за осциллограммой. Проверка мотортестером является наиболее достоверной, позволяет обнаружить малейшие нарушения резистивного слоя, и для полноценной диагностики датчика необходимо отдавать предпочтение именно ей.

Рассмотрим несколько примеров осциллограмм исправных и неисправных датчиков потенциометрического типа.

Осциллограмма исправного датчика. Напряжение нарастает плавно, без скачков и провалов.

Датчик неисправен. Имеется износ резистивного слоя, приводящий к небольшим скачкам напряжения.

Сильный износ резистивного слоя. Броски напряжения достигают максимально возможного.

Рассказать о диагностике всех типов датчиков в рамках одной статьи невозможно. Все тонкости и нюансы диагностики датчиков термоанемометрического, терморезистивного, пьезоэлектрического и других подробно рассмотрены в обучающем курсе “Диагностика датчиковой аппаратуры”

Автомобильные датчики

Электронные системы управления современного автомобиля немыслимы без датчиков. Автомобильные датчики оценивают значения неэлектрических параметров и преобразуют их в электрические сигналы. В качестве сигнала выступает напряжение, ток, частота и др. Сигналы преобразуются в цифровой код и передаются в электронный блок управления, который в соответствии с заложенной программой приводит в действие исполнительные механизмы.

Датчики бывают активными и пассивными. В активном датчике электрический сигнал возникает за счет внутреннего энергетического преобразования. Пассивный датчик преобразует внешнюю электрическую энергию.

Датчики применяются практически во всех системах автомобиля. В двигателе они измеряют температуру и давление воздуха, топлива, масла, охлаждающей жидкости. Ко многим движущимся частям автомобиля (коленчатый вал, распределительный вал, дроссельная заслонка, валы в коробке передач, колеса, клапан рециркуляции отработавших газов) подключены датчики положения и скорости. Большое количество датчиков используется в системах активной безопасности.

В зависимости от назначения различают следующие типы автомобильных датчиков: положения и скорости, расхода воздуха, контроля эмиссии отработавших газов, температуры, давления.

Датчики положения и скорости

Преобразование линейного или углового перемещения контролируемого объекта в электрический сигнал производится с помощью датчиков положения и скорости. В автомобиле используются датчики положения коленчатого вала, положения распределительного вала, положения дроссельной заслонки, уровня топлива, положения педали акселератора, частоты вращения колеса, угла поворота рулевого колеса.

Датчики положения и скорости выполняются контактными или бесконтактными. Несмотря на то, что предпочтение отдается бесконтактным датчикам, контактные устройства еще широко применяются. При всех достоинствах, контактные датчики имеют один существенный недостаток – склонность к загрязнению и, соответственно, снижение точности измерений.

К контактным датчикам положения относятся потенциометры с подвижными контактами, которые измеряют линейные и угловые перемещения объекта. Подвижные контакты перемещаются по длине переменного резистора и изменяют его сопротивление, пропорциональное фактическому перемещению объекта. Потенциометры широко используются в качестве датчика положения дроссельной заслонки, датчика положения педали газа, объемного расходомера воздуха, датчика уровня топлива и др.

В основу работы бесконтактных датчиков положения и скорости положены различные физические явления и эффекты, и соответствующие им датчики: индуктивные, Виганда, Холла, магниторезистивные, оптические и множество других.

Индуктивный датчик широко используется в качестве датчика положения коленчатого вала. Он содержат постоянный магнит, магнитопровод и катушку. Когда стальной объект (зуб шестерни) приближается к датчику, магнитное поле увеличивается, а в катушке наводится переменное напряжение. В отличие от индуктивных датчиков датчики Виганда не используют постоянный магнит, а активируются внешним магнитом.

Наиболее востребованные бесконтактные датчики построены на эффекте Холла. Суть эффекта заключается в том, что постоянный магнит, связанный с измеряемым объектом, при вращении генерирует напряжение, пропорциональное угловому положению объекта. В датчиках Холла используется несколько схем измерения положения и скорости: вращающийся прерыватель, многополюсный кольцевой магнит, ферромагнитный зубчатый ротор. Для измерения угловой скорости зубчатого ротора применяется дифференциальный датчик Холла – два рядом расположенных измерительных элемента, позволяющих видеть зуб и впадину одновременно.

Магниторезистивные датчики начали применяться сравнительно недавно, но очень популярны. Они построены на магниторезистивном эффекте – свойстве некоторых токонесущих материалов изменять свое сопротивление во внешнем магнитном поле. Различают анизотропные магниторезисторы (АМР) и гигантские магниторезисторы (ГМР). АМР-датчики используют электрическое сопротивление ферромагнитных материалов. Измерительный элемент ГМР-датчика состоит из чередующихся ферромагнитных и немагнитных слоев. Анизотропные магниторезисторы применяются в датчике угла поворота рулевого колеса.

В оптическом датчике для определения углового положения используются светомодулирующий диск с чередующимися прозрачными и непрозрачными секторами. Диск располагается между светодиодом и фоторезистором. При перемещении (повороте) диска на фоторезисторе вырабатываются электрические импульсы, по которым определяется угол и скорость поворота вала.

Датчики расхода воздуха

Расход воздуха, поступающего в двигатель, определяется по объему или массе. Датчики определяющие расход воздуха по объему называют объемными расходомерами. Работа таких датчиков построена на оценке перемещения заслонки, пропорционального величине потока воздуха.

Расход воздуха по массе оценивается датчиком массового расхода воздуха. Наибольшее применение нашли микромеханические расходомеры, построенные на тонкопленочных нагреваемых элементах – терморезисторах. Воздух, проходя через терморезисторы, охлаждает их. При этом, чем больше проходит воздуха, тем сильнее охлаждаются терморезисторы. Определение массового расхода воздуха построено на измерении мощности и тока, необходимых для поддержания постоянной температуры терморезисторов.

Датчики контроля эмиссии отработавших газов

Регулирование содержания вредных веществ в отработавших газах обеспечивают датчики контроля эмиссии, к которым относятся датчик концентрации кислорода и датчик оксида азота.

Кислородный датчик (другое название – лямбда-зонд) устанавливается в выпускной системе и в зависимости от содержания кислорода в отработавших газах вырабатывает определенный сигнал. На основании сигнала система управления двигателем поддерживает стехиометрический состав топливно-воздушной смеси (т.н. лямбда-регулирование).

На современных автомобилях, оборудованных каталитическим нейтрализатором, устанавливается два датчика концентрации кислорода. Кислородный датчик на выходе из нейтрализатора контролирует его работоспособность и обеспечивает содержание вредных веществ в отработавших газах в пределах установленных норм.

Датчик оксидов азота контролирует содержание оксидов азота в отработавших газах. Он устанавливается в выпускной системе бензиновых двигателей с непосредственным впрыском топлива после дополнительного (накопительного) нейтрализатора. Датчик включает две камеры. В первой камере оценивается концентрация кислорода. Во-второй камере происходит восстановление оксидов азота на кислород и азот. Концентрация оксидов азота оценивается по величине восстановленного кислорода.

Датчики температуры

Измерение температуры производится в различных системах автомобиля:

Система охлажденияТемпературы охлаждающей жидкостиСистема управления двигателемТемпературы воздуха во впускном коллектореСистема климат-контроля

Температуры наружного воздуха;

Температуры воздуха в салоне автомобиля

Система смазкиТемпературы маслаАвтоматическая коробка передачТемпературы рабочей жидкости

Для измерения температуры применяются терморезисторы с отрицательным температурным коэффициентом. С увеличением температуры сопротивление термистора снижается, соответственно возрастает ток. В качестве датчика температуры используется также термопара – проводник, состоящий из двух различных металлов и под воздействием температуры генерирующий термоэлектрическое напряжение.

Датчики давления

В современных автомобилях используется большое количество датчиков давления, с помощью которых измеряется давление во впускном коллекторе, давление топлива в системе впрыска, давление в шинах, давление рабочей жидкости в тормозной систем, давления масла в системе смазки.

Для оценки давления применяется пьезорезистивный эффект, который заключается в изменении сопротивления тензорезистора при механическом растяжении диафрагмы. Измеряемое давление может быть абсолютным или относительным. Датчик давления во впускном коллекторе измеряет абсолютное давление, т.е. давление воздуха относительно вакуума.

Представленная классификация охватывает далеко не все автомобильные датчики. Необходимо упомянуть ряд других датчиков: датчик детонации, датчик уровня масла, датчик дождя. Датчик детонации оценивает вибрацию двигателя, которая сопровождает неконтролируемое воспламенение топливно-воздушной смеси. Датчик представляет собой пьезоэлектрический элемент, который при вибрации генерирует электрический сигнал.

Датчик уровня масла в современном двигателе заменяет функции щупа. Уровень масла может измеряться поплавковым переключателем или более совершенным тепловым датчиком, который кроме уровня масла измеряет его температуру. Датчик дождя обеспечивает автоматическую работу стеклоочистителей. Конструктивно он объединен с датчиком освещенности.

Электронные датчики

Электронные датчики

Несмотря на небольшие размеры, датчики играют огромную роль в исправной работе всех узлов автомобиля, поэтому выход из строя одного из них, может привести к серьезным последствиям. Говоря о такого рода датчиках, хочется отметить, что это, в первую очередь, помощники, которые вовремя подсказывают нам о возможной проблеме или неисправности. Поэтому Hella так тщательно подходит к вопросу качества своей продукции и на протяжении десятилетий известна своими надежными датчиками для всех систем автомобиля, в результате большинство производителей выбирают Hella, среди которых Volkswagen Audi Group, BMW, Ford, GM, Opel, Renault, Peugeot, Citroen и многие другие.

Помимо всем давно известных датчиков, использующихся в различных системах автомобиля, начиная от управления двигателем (датчики температуры воздуха и жидкостей, уровня, давления, детонации), тормозной системой (датчики положения, частоты вращения колес, наклона, скорости), и, наконец, обыкновенных концевых датчиков сигнализирующих о незакрытых дверях в автомобиле, у Hella есть множество как инновационных так и уже давно установившихся технологий направленных на достижение как безопасности так и экологичности наших автомобилей.

Вот, например, давно применяемый в автомобилях кислородный датчик.

Вследствие ужесточения законов об ограничении вредных автомобильных выхлопов технологии последующей обработки выхлопных газов были значительно улучшены. Для обеспечения оптимальной работы катализатора выхлопных газов требуется оптимальное сгорание топлива. Это достигается за счёт состава рабочей смеси из расчёта 14,7 кг

воздуха на 1 кг топлива (стехиометрическая смесь). Эта оптимальная смесь обозначается греческой буквой λ (лямбда), отсюда и второе название датчика — лямбда-зонд. Показатель лямбда отражает соотношение между теоретической потребностью в воздухе и фактическим его поступлением. Это означает, что остаточное содержание кислорода в выхлопных газах (около 0,3% — 3%) сравнивается с содержанием кислорода (около 20,8%) в окружающем воздухе. Так как кислородный датчик подвержен определённому износу, то его нужно регулярно (примерно после каждых 30 000 км пробега) проверять на надёжность работы, например, в рамках технического осмотра. Кроме того, нужно помнить, что металлосодержащие присадки и топливо, содержащие свинец, сокращают ресурс кислородного датчика. Но при правильной работе, кислородный датчик позволяет добиться снижения токсичности выхлопа и существенной экономии топлива.

Читайте также:  Датчики давления

На современных автомобилях устанавливается всё большее число электронных узлов и деталей для того, чтобы выполнить нововведенные положения законодательства, например, в отношении ограничения выброса вредных газов и расхода топлива. Всё большее применение они находят для повышения уровня активной и пассивной безопасности, а также для удобства управления и езды. Из них самым важным элементом является сенсорный датчик для определения положения педали акселератора. Благодаря бесконтактному принципу измерения, реализованному с помощью уникальной концепции CIPOS® (Contactless Inductive Position Sensor — бесконтактный индуктивный датчик), сенсор разработанный компанией Hella практически не подвержен износу. В отличие от ее же первых электронных педалей газа, разрабатываемых с 1996 года, где угол отклонения педали определялся на основании данных о сопротивлении, установленного на оси педали потенциометра.

Принцип работы прост как все гениальное: переменное напряжение, приложенное к передающей катушке, вызывает магнитное поле, которое индуцирует напряжения в приёмных катушках. В токопроводящих рамках ротора также индуцируется электрический ток, который влияет на магнитное поле приёмных катушек. В зависимости от положения ротора по отношению к приёмным катушкам в статоре, генерируются амплитуды напряжения. Эти амплитуды обрабатываются в электронном модуле и передаются на управляющий блок в виде постоянного напряжения. В блоке управления сигнал оценивается и выдаётся соответствующий импульс на управление дроссельной заслонкой. Характеристика напряжения сигнала зависит от характера воздействия на педаль акселератора.

Сейчас электронная педаль акселератора устанавливается не только на дорогие машины премиум класса, но и на доступные многим автомобили. Компания Hella зарекомендовала себя надежным партнером, поставляя датчики и педали на конвейеры практически всех производителей автомобилей. В России педали газа производства компании Hella поставляются на Горьковский Автомобильный Завод (ГАЗ) и устанавливаются на автомобили с двигателем ЗМЗ.

В заключение обратим наше внимание на колеса автомобиля. Давление шин — существенный фактор безопасности автомобиля. Большинство повреждений шин объясняется скрытой потерей давления. Зачастую этот дефект замечается водителями автомобилей слишком поздно. Слишком низкое давление в шинах ведёт к повышенному расходу топлива и к опасному поведению автомобиля на дороге. С этим связано также повышение температуры шин и увеличенный износ. По причине слишком низкого давления шина может внезапно лопнуть, что означает огромный риск для всех, кто находится в автомобиле. Поэтому всё большее число производителей автомобилей предлагают системы контроля давления в шинах (RDKS) серийно или в качестве опции. Также в рамках общей торговли автомобильными запасными частями предлагаются различные системы для дооборудования автомобилей.

Системы контроля давления в шинах контролируют давление в шинах и температуру шин. RDKS существует уже несколько лет, а в США эта система является обязательной для всех автомобилей. Другими словами, мы уже стоим на пороге того времени, когда с этой системой будет сталкиваться каждая авторемонтная мастерская. И стоит помнить, что во время замены колёс, вследствие недостаточных знаний о системе можно повредить RDKS.

В настоящее время на рынке существуют две различные системы RDKS — пассивная и активная. В системах пассивного измерения контроль давления происходит с помощью сенсорных датчиков ABS, находящихся в автомобиле. Управляющее устройство ABS распознаёт потерю давления в шине вследствие изменения отрезка пути, проходимого шиной за один оборот. Шина с пониженным давлением делает большее число оборотов, чем шина с нормальным давлением. Всё же эти системы работают не так точно, как системы активного измерения, и для формирования предупреждающего сигнала требуется потеря примерно 30% давления. Преимущество пассивных систем заключается в их дешевизне, так как они используют для своего действия многие, уже имеющиеся в автомобиле компоненты. Необходимо иметь лишь соответствующим образом настроенное программное обеспечение ABS и дополнительный указатель на приборной панели.

Гораздо точнее, но и дороже являются системы активного измерения. В этих системах в каждом колесе устанавливается сенсорный датчик с питанием от батареек. Сенсорный датчик измеряет температуру и давление в шинах, и передаёт радиосигнал на управляющее устройство RDKS, а также на панель управления. Hella предлагает систему активного измерения для установки на любой легковой автомобиль или легкий коммерческий транспорт.

Статья подготовлена по материалам компании Hella.

ДАТЧИКИ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

ДАТЧИКИ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется в зависимости от температуры). Датчик ввернут в отводящий штуцер термостата и соединен с входом контроллера. При низкой температуре сопротивление датчика высокое, а при высокой температуре – низкое (табл. 10.8).

ЭБУ рассчитывает температуру охлаждающей жидкости по падению напряжения на датчике. На холодном двигателе падение напряжения высокое, а на прогретом – низкое. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет ЭБУ.

Для замены датчика вам потребуется ключ «на 19».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Частично слейте охлаждающую жидкость из радиатора.

3. Сожмите фиксатор колодки жгута проводов.

4. . и отсоедините колодку от датчика температуры охлаждающей жидкости.

5. Ослабьте ключом затяжку датчика.

6. . и выверните его из штуцера термостата.

7. Остудите датчик до температуры окружающего воздуха. Подсоедините тестер в режиме омметра к выводам датчика и измерьте его сопротивление. Измерьте термометром текущую температуру воздуха и сравните полученные значения с табл. 10.8. При отклонении сопротивления от нормы замените датчик.

8. Для измерения сопротивления на выводах датчика при различных температурных режимах опустите датчик в горячую воду и проверьте изменение его сопротивления по мере остывания воды, контролируя температуру воды термометром. Номинальные значения сопротивления при различной температуре указаны в табл. 10.8.

9. Установите датчик в порядке, обратном снятию.

10. Залейте охлаждающую жидкость.

Датчик детонации , прикрепленный к верхней части блока цилиндров, улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При возникновении детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. ЭБУ по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор и отсоедините колодку жгута проводов от колодки жгута датчика детонации.

3. Выверните болт крепления датчика детонации к блоку цилиндров двигателя.

4. . и снимите датчик (впускной трубопровод для наглядности снят).

Обратите внимание на маркировку датчика, чтобы при замене на новый приобрести аналогичный датчик детонации.

5. Установите датчик в обратном порядке, ввернув болт его крепления моментом 19,5–20,5 Н·м.

Комбинированный датчик температуры и абсолютного давления воздуха во впускном трубопроводе. Датчик абсолютного давления выполнен в виде четырех резисторов переменного сопротивления, соединенных мостом и наклеенных на диафрагму, которая сжимается или растягивается в зависимости от абсолютного давления впускного воздуха внутри впускного трубопровода. Он фиксирует изменение давления во впускном трубопроводе в зависимости от изменения нагрузки и частоты вращения коленчатого вала двигателя и преобразует его в напряжение выходного сигнала. ЭБУ подает на датчик напряжение питания 5 В и обрабатывает его сигналы, передаваемые по цепи передачи сигнала. В зависимости от сигнала датчика ЭБУ изменяет продолжительность подачи топлива и угол опережения зажигания.

Датчик температуры впускного воздуха представляет собой термистор с отрицательным температурным коэффициентом: электрическое сопротивление датчика уменьшается с повышением температуры. По информации о температуре воздуха от датчика контроллер регулирует количество впрыскиваемого топлива.

Для замены датчика вам потребуется отвертка с крестообразным лезвием.

1. Отожмите пластмассовый фиксатор колодки жгута проводов.

2. . и отсоедините колодку от датчика.

3. Выверните два винта крепления датчика температуры и абсолютного давления впускного воздуха к впускному трубопроводу.

4. . и снимите датчик.

Обратите внимание на маркировку датчика, чтобы при замене неисправного датчика приобрести аналогичный датчик температуры и абсолютного давления впускного воздуха.

5. Установите датчик температуры и абсолютного давления впускного воздуха в порядке, обратном снятию.

Датчик скорости автомобиля установлен на коробке передач. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Сожмите пружинный фиксатор колодки жгута проводов и отсоедините колодку от датчика скорости.

3. Выверните болт крепления и снимите датчик скорости.

4. Установите датчик скорости в порядке, обратном снятию.

Датчик положения дроссельной заслонки (ДПДЗ) установлен сбоку на дроссельном узле и связан с осью дроссельной заслонки.

Он представляет собой потенциометр, на один конец которого подается «плюс» напряжения питания (5 В), а другой его конец соединен с «массой». С третьего вывода потенциометра (от ползунка) идет выходной сигнал к ЭБУ. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), напряжение на выходе датчика изменяется.

При закрытой дроссельной заслонке оно ниже 0,95 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В. Отслеживая выходное напряжение датчика,

ЭБУ корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). ДПДЗ не требует регулировки, так как электронный блок воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

При отказе датчика дроссельной заслонки ЭБУ заносит в память код неисправности датчика, включает контрольную лампу системы управления двигателем и рассчитывает предполагаемое значение угла открытия дроссельной заслонки по частоте вращения коленчатого вала и по сигналам комбинированного датчика температуры и абсолютного давления воздуха во впускном трубопроводе.

Для замены ДПДЗ вам потребуется отвертка с крестообразным лезвием.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на фиксатор колодки жгута проводов.

3. . и отсоедините колодку от датчика.

4. Выверните два винта крепления.

5. . и снимите датчик положения дроссельной заслонки с дроссельного узла.

6. Установите датчик в порядке, обратном снятию.

Регулятор холостого хода (РХХ) регулирует частоту вращения коленчатого вала в режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается по сигналам ЭБУ. Полностью выдвинутая игла регулятора (что соответствует 0 шагов) перекрывает поток воздуха. Когда игла вдвигается, обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

Датчик положения коленчатого вала индуктивного типа предназначен для синхронизации работы электронного блока управления с ВМТ поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала.

Датчик установлен на картере сцепления напротив задающего зубчатого венца маховика. На маховике вырезаны зубья с равноудаленными впадинами. Два зуба срезаны для создания импульса синхронизации («опорного» импульса), который необходим для согласования работы блока управления с ВМТ поршней в 1-м и 4-м цилиндрах.

При вращении коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Блок управления по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

При отказе датчика пуск двигателя невозможен.

Для замены датчика вам потребуется ключ «на 10».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор.

3. . и отсоедините колодку жгута проводов системы управления двигателем от колодки жгута проводов датчика.

4. Выверните болт крепления датчика.

5. . выньте колодку жгута проводов датчика из кронштейна.

6. . и извлеките датчик положения коленчатого вала из отверстия в картере сцепления.

7. Установите датчик в порядке, обратном снятию.

Датчик концентрации кислорода установлен в приемной трубе системы выпуска отработавших газов. Содержащийся в отработавших газах кислород реагирует с датчиком концентрации кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода – бедная смесь) до 0,9 В (мало кислорода – богатая смесь).

Для нормальной работы температура датчика должна составлять не ниже 300°С. Поэтому для быстрого прогрева после пуска двигателя в датчик встроен нагревательный элемент.

Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую команду по корректировке состава рабочей смеси подавать на форсунки.

Если смесь бедная (низкая разность потенциалов на выходе датчика), то контроллер дает команду на обогащение смеси; если смесь богатая (высокая разность потенциалов) – на обеднение смеси.

Для замены управляющего датчика концентрации кислорода вам потребуются: ключ «на 22», отвертка с плоским лезвием.

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Выдвиньте красный фиксатор.

3. и разъедините колодки жгутов проводов системы управления двигателем и датчика концентрации кислорода.

4. Выверните датчик из приемной трубы и снимите его с автомобиля.

Обратите внимание на маркировку датчика, чтобы при замене на новый приобрести аналогичный датчик концентрации кислорода.

5. Установите датчик в порядке, обратном снятию, смазав предварительно резьбовую часть датчика графитной смазкой.

Датчик фаз установлен в задней части головки блока цилиндров. Принцип его действия основан на эффекте Холла. Датчик определяет ВМТ такта сжатия поршня 1-го цилиндра. Сигнал датчика используется контроллером для организации фазированного впрыска топлива в соответствии с порядком работы цилиндров.

При возникновении неисправности цепи контроллер заносит в свою память ее код и включает контрольную лампу.

Для замены датчика фаз вам потребуется ключ «на 8».

1. Отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Нажмите на пружинный фиксатор колодки жгута проводов.

3. . и отсоедините колодку от разъема датчика.

4. Выверните два болта крепления крышки датчика к его корпусу.

5. . и снимите крышку с установленными в ней чувствительным элементом и разъемом.

Чувствительный элемент датчика фазы приклепан к крышке заклепками, поэтому рекомендуем заменять его в сборе с крышкой.

6. Установите датчик фаз в порядке, обратном снятию.

Ссылка на основную публикацию