Датчики давления в жидкостных средах

Ремонт и техническое обслуживание автомобилей

Датчики давления

Общие сведения

Давление – одна из важных физических характеристик текучих сред – жидкостей, расплавленных металлов и газов. В машиностроении разнообразные жидкости и газы широко используются в качестве рабочих тел систем машин и механизмов, поэтому нередко возникает необходимость измерения и контроля над давлением в этих средах.

Конструкции современных автомобилей также используют большое число датчиков давления различных жидкостных и газообразных текучих сред, и их количество постоянно растет.
Независимо от метода измерения, датчики могут определять избыточное, абсолютное или дифференциальное давление. При этом могут использоваться разные единицы измерения давления.
Чтобы исключить возможную путаницу в этих единицах, в таблице 1 приведены соотношения между используемыми в различных технических источниках единицами измерения давления.

Таблица 1. Единицы измерения давления

* внесистемная единица измерения давления, иногда употребляемая в США и некоторых англоязычных странах.

В таблице 2 приведены некоторые узлы автомобиля, где имеется необходимость измерения давления с целью получения управляющих сигналов для ЭСАУ.

Таблица 2. Некоторые датчики давления, применяемые в автомобильной технике

Абсолютное давление во впускном коллектореБарометрическое давлениеДавление в системе рециркуляции выхлопных газовДавление топливаДавление топлива Common RailДавление маслаДавление тормозной жидкостиДавление газа

Датчики барометрического и абсолютного давления во впускном коллекторе

Такие датчики используются в ЭСАУ автомобильных двигателей для определения объемного расхода воздуха, с целью регулирования количества впрыскиваемого за рабочий цикл топлива. Это регулирование необходимо для обеспечения заданного состава топливовоздушной смеси на различных режимах работы ДВС и при различных внешних условиях.

Этот способ измерения дешевле в реализации по сравнению с непосредственным измерением массового расхода воздуха, но менее точен и используется в бортовых диагностических системах второго поколения OBD-II.

В некоторых конструкциях ЭСАУ двигателей такой датчик давления используется совместно с расходомером воздуха, а в двигателях с наддувом могут использоваться несколько датчиков давления.

Датчики барометрического (атмосферного) давления адаптируют ЭБУ двигателя к перепадам высоты и изменениям атмосферного давления. Обычно применяются совместно с объемным расходомером воздуха в одном корпусе.

Измерение атмосферного давления производится при включении зажигании до запуска ДВС. Если автомобиль эксплуатируется в условиях больших перепадов высот (например, в горах), для адаптации подачи топлива к новой высоте необходимо останавливаться и перезапускать двигатель.

Рис. 1. Комбинированный датчик барометрического давления и разрежения:
а) Ford, б) Chrysler; 1 – трубка соединения вакуумного шланга с впускным коллектором; 2 – трубка соединения с атмосферой

Часто в системах управления двигателем используются комбинированные датчики, измеряющие и атмосферное давление, и давление во впускном коллекторе (рис. 1). Такие датчики иногда называют MAP-сенсорами (Manifold Air Pressure) и крепят непосредственно к стенке впускного коллектора.

Датчики, применяемые для измерения разрежения во впускном трубопроводе, могут быть различных конструкций.

Датчики давления дискретного действия представляют собой устройство, где замыкание и размыкание контактов происходят под действием упругой мембраны, испытывающей измеряемое давление.

Датчики давления непрерывного действия представляют собой либо потенциометр, ползунок которого связан с мембраной, либо катушку индуктивности, в которую мембрана под действием давления вдвигает магнитный сердечник.

Интегральные датчики давления подключаются к ЭБУ через коммутатор и АЦП. В зависимости от разрядности контроллера шаг дискретизации показаний датчика может составлять до 4 мс (8-разрядный), до 2 мс (16-разрядный). Эти датчики отличаются небольшими размерами, высокой надежностью и унифицированным выходным сигналом, благодаря чему, они используются для подключения к аналоговым или импульсным входам микроконтроллера.

В современных ЭСАУ применяются микромеханические или толстопленочные датчики давления . Микромеханические датчики давления (рис. 2) имеют более прогрессивную конструкцию, и обеспечивает более высокую точность измерений. Большинство современных датчиков давления построены по микромеханической технологии.
Микромеханические датчики, это полупроводниковые датчики с преобразователем давления на кремниевом кристалле в работе которых используется пьезорезистивный эффект (рис. 2, 3).

На поверхности кремниевого кристалла сформирован мост из четырех тензорезисторов, ток через которые изменяется под действием прогиба чувствительной диафрагмы. С одной стороны диафрагмы расположена камера с вакуумом, с другой на диафрагму воздействует давление воздуха во впускном коллекторе.
В зависимости от конструкции датчика, давление воздействует непосредственно на диафрагму или через защитный слой.

Рис. 2. Микромеханические пьезорезистивные датчики T-MAP BOSCH абсолютного давления до 400 кПа: а) типичный внешний вид датчика; б) конструкция сенсорной ячейки: 1-защитный гель; 2-давление; 3-сенсорный чип; 4-присоединяемые выводы; 5-керамическая подложка; 6-стеклянное основание; в) конструкция датчика давления: 1-присоединяемые выводы; 2-крышка; 3-сенсорный кристалл; 4-керамическая подложка; 5-корпус с фитингом измеряемого давления; 6-прокладка; 7-NTC-элемент

Рис. 3. Упрощенная электрическая схема датчика абсолютного (атмосферного) давления с цепями компенсации:
А – цепь температурной компенсации, В – измерительный мост, С – подстройка нуля, D – коэффициент усиления, Е – термокомпенсация усилителя

В корпусе датчика также размещается независимый датчик температуры воздуха для температурной компенсации и усилитель мостового напряжения, на выходе которого формируется сигнал в пределах 0,5…5 В.
На основании выходного напряжения ЭБУ оценивает давление во впускном коллекторе, чем больше давление воздуха, тем выше напряжение (обычно зависимость давления и выходного напряжения является линейной, т. е. график представляет собой наклонную прямую линию).

Информацию о давлении в зависимости от конструкции датчика несет величина выходного напряжения или его частота.
Погрешность датчика абсолютного давления во впускном коллекторе обычно составляет порядка 1%, а датчика барометрического давления – около 1,5%, причем, по краям рабочего диапазона погрешность растет как по температуре, так и по давлению.

Датчики давления в жидкостных средах

Работа таких датчиков, как правило, основана на преобразовании перемещения упругой диафрагмы в положение переключателя или движка потенциометра. На таком принципе, например, в старых конструкциях, работали датчики давления масла в ДВС.

В современных автомобилях все больше используются кремниевые или керамические интегральные датчики. Непосредственно в корпусе датчика размещают унифицирующие преобразователи. Имеется защита от электромагнитных помех, микросхемы работают при температуре -40. +150 °С в условиях вибраций, при различных давлениях в агрессивных химических средах.

Датчик давления топлива в аккумуляторе системы Common Rail (рис. 4) вворачивается непосредственно в топливную рейку высокого давления. Топливо попадает в датчик через отверстие в аккумуляторе и канал в корпусе датчика и под давлением воздействует на диафрагму.
Чувствительный полупроводниковый элемент датчика, расположенный на диафрагме, преобразует давление в электрический сигнал, который усиливается в обрабатывающем контуре и поступает в ЭБУ.

Рис. 4. Датчик давления топлива в аккумуляторе системы Common Rail:
1 – электрические выводы; 2 – чип со схемой обработки сигнала; 3 – диафрагма с чувствительным элементом; 4 – топливный канал

В таких датчиках прогиб диафрагмы приблизительно на 1 мм при давлении 1500 бар, изменяет электрическое сопротивление чувствительного элемента и вызывает изменение напряжения в измери-тельном мосту, на который подается питание 5 В.
Первичный сигнал изменяется в диапазоне 0…70 мВ, в зависимости от прилагаемого давления, и затем усиливается в контуре обработки сигнала до 0,5…4,5 В.
Точность измерения давления датчиком в главном рабочем диапазоне составляет ±2% от полной шкалы.

В автомобилях с автоматической трансмиссией применяются датчики измеряющие давление масла в коробке передач.
Для работы антиблокировочной системы тормозов (ABS) необходимо измерять давление в тормозных контурах.
Давление жидкости в тормозной гидравлической системе выше, чем в коробке переключения передач. Например, в тормозной системе автомобиля оно составляет до 10…15 бар, а в контурах ABS оно может достигать 35 бар.
Конструкция и принцип работы таких датчиков подобен рассмотренным выше датчикам.

Датчики давления в газовых средах

Известно, что автомобиль производит токсичные отходы в процессе эксплуатации: 60% в виде выхлопных газов, 20% в виде картерных газов и 20% за счет испарений топлива. Со всеми этими выбросами успешно борются соответствующие системы в составе ЭСАУ двигателем.

Для уменьшения вредного влияния испарений топлива они из бака поступают в адсорбер с активированным углем, объемом 850. 1000 см 3 , где накапливаются и сжигаются в двигателе в определенное время. На рис. 5 показана система улавливания паров бензина из топливного бака, в которой для управления продувкой адсорбера используется клапан с дифференциальным датчиком давления между давлением в задроссельной зоне впускного коллектора и давлением паров топлива в баке с рабочим диапазоном ±3,5 кПа.

Рис. 5. Система улавливания паров бензина

В современных двигателях для уменьшения содержания окислов азота (NOx) в выхлопных газах используется система EGR (exhaust gas recirculation) рециркуляции выхлопных газов. Это система является частью ЭСАУ двигателем.
Окислы азота возникают в камере сгорания при температуре выше 1370 °С. В присутствие солнечного света NOx вступает в реакцию с углеводородом, образуя канцерогенный фотохимический смог.

На частичных режимах работы двигателя ЭСАУ снижает температуру сгорания рабочей смеси, путем введением небольшого количества (6. 10%) выхлопных газов из выпускного во впускной коллектор. Так как выхлопные газы инертны, то они разбавляют топливовоздушную смесь, не изменяя соотношения воздух/топливо.
Регулирование количества подаваемых отработавших газов производится клапаном EGR, исправность работы которого постоянно контролируется ЭБУ.
Например, на некоторых автомобилях в трубе между EGR и впускным коллектором измеряется дифференциальное давление по обе стороны с помощью датчика дифференциального давления. Когда клапан EGR открывается, это давление убывает, когда клапан EGR закрыт, давление по обе стороны вставки становится одинаковым.

При сгорании топлива в дизеле образуются частицы сажи – микроскопические углеродистые частицы диаметром около 0,05 мкм на которых адсорбируются различные углеводородные соединения, оксиды металлов и сера. Состав частиц сажи зависит от параметров рабочего процесса, режимов работы двигателя и состава топлива. Некоторые углеводородные соединения опасны для здоровья человека.
Сажевый фильтр задерживает содержащиеся в газах частицы сажи. При заполнении фильтра сажей до определенной величины система управления двигателем запускает процесс активной регенерации. Степень заполнения фильтра сажей определяется блоком управления по его газодинамическому сопротивлению с помощью дифференциального датчика перепада давления до сажевого фильтра и после (рис. 6).

Рис. 6. Дифференциальный датчик давления перепада давления

Мембранные потенциометрические датчики давления

В таких датчиках чувствительным элементом является гибкая диафрагма или мембрана. При изменении давления ее перемещение преобразуется в положение движка потенциометра.
Недостатки потенциометрических датчиков заключаются в износе, а также в статическом трении из-за чего затруднено регулирование в диапазоне менее 0,5% от номинала.

Рис. 7. Потенциометрический датчик давления:
1 – преобразователь; 2 – щетка; 3 – контакты разъема; 4 – щеткодержатель; 5 – ось поводка; 6 – поводок; 7 – возвратная пружина; 8 – рычаг; 9 – шток; 10,13 – корпус; 11 – мембрана; 12 – канал

Резистивный проволочный потенциометр со скользящим контактом – один из наиболее простых и эффективных преобразователей перемещения, в котором скользящий контакт (движок) соединен с перемещающейся под действием давления мембраной, а остальная часть потенциометра закреплена неподвижно.
Движок потенциометра контактирует с отдельными витками на катушке, поэтому выходной сигнал (напряжение) преобразователя изменяется не непрерывно, а в виде чередующихся малых и больших скачков. Малый скачок возникает, когда движок замыкает два соседних витка, большой – в момент перехода движка к следующему витку и размыкания контакта с предыдущим витком.
Следовательно, разрешение такого преобразователя зависит от диаметра провода и может быть повышено путем использования более тонкого провода. Потенциометр с плотностью намотки 50 витков на миллиметр имеет предельное разрешение 20 мкм, что близко к практическому пределу.

В современных автомобилях используются потенциометры, выполненные по пленочной технологии, где резистивный элемент представляет собой керамическое основание с нанесённой топологией проводникового, резистивного и защитного слоёв.
Такие датчики могут эксплуатироваться в достаточно жёстких условиях.

Читайте также:  Замена наружного шруса и пыльника наружного шруса Skoda Fabia

Датчики давления на основе линейных дифференциальных трансформаторов (ЛДТ)

Линейный дифференциальный трансформатор – это электромеханическое устройство, вырабатывающее выходной электрический сигнал, пропорциональный перемещению ферромагнитного сердечника под действием смещения диафрагмы. ЛДТ состоит из первичной и двух вторичных обмоток, симметрично расположенных на цилиндрическом каркасе. Свободно движущийся внутри обмоток ферромагнитный сердечник в форме стержня обеспечивает связь этих обмоток через магнитный поток (рис. 8 ).

Рис. 8. Принципиальная схема линейного дифференциального трансформатора

При подаче переменного напряжения U1 на первичную обмотку (3. 15 В с частотой 2. 5 кГц) в двух вторичных обмотках наводятся ЭДС взаимной индукции.
Вторичные обмотки включены последовательно и встречно, поэтому результирующий выходной сигнал U0 преобразователя представляет собой разность этих напряжений и равен нулю, когда сердечник находится в центральной (нулевой) позиции.
При перемещении сердечника из нулевой позиции напряжение, индуцируемое во вторичной обмотке, к которой движется сердечник, возрастает, а напряжение, индуцируемое в другой вторичной обмотке, уменьшается.
В результате вырабатывается дифференциальный выходной сигнал, величина которого линейно зависит от положения сердечника. Фаза выходного напряжения изменяется скачком на 180° при переходе через нулевую позицию. Информацию о перемещении несет амплитуда и фаза выходного сигнала.
Погрешность подобного преобразования перемещения сердечника в напряжение составляет около 0,25%. Коэффициент трансформации дифференциального трансформатора 10:1. 2:1.

На автомобилях ЛДТ обычно не используются, но могут применяться, например, для измерения абсолютного давления во впускном коллекторе, давления масла, топлива и т.п. ЛДТ характеризуется отсутствием трения, стабильностью выходного сигнала и способностью работать в агрессивных средах.

Емкостные датчики давления

Емкостные датчики давления используют метод изменения емкости конденсатора при изменении расстояния между обкладками-электродами. Принципиально конструкция состоит из конденсатора, одна из обкладок которого закреплена на упругой металлической мембране (или выполнена в виде мембраны). При изменении давления мембрана с электродом деформируется, и расстояние между обкладками конденсатора изменяется.

Рис. 9. Емкостной датчик с кремниевым чувствительным элементом

На приведенном рисунке одна из обкладок конденсатора выполнена в виде упругой мембраны, которая прогибается при изменении действующего на нее давления. Мембраны для таких датчиков обычно выполняются из кремния (рис. 9) или керамики, при этом конструкции датчиков аналогичны независимо от материала мембраны.

На кремниевой подложке расположен твердый слой, являющийся нижней обкладкой конденсатора. В изолирующем слое стекла и кварца закрепляется кремниевая мембрана, являющаяся второй обкладкой конденсатора. В этом же изолирующем слое имеются токопроводящие электроды от обеих обкладок конденсатора. Между обкладками образуется герметичная полость или вакуум. Иногда пространство между обкладками заполняется маслом или какой-нибудь органической жидкостью.

Подобные датчики все чаще используются в различных системах автомобиля, например, для измерения давления в шинах, во впускном коллекторе двигателя и т.п. Например, емкость подобных конденсаторов применяемых для измерения давления впуска в двигатель и меняется линейно примерно от 32 до 39 пФ при изменении давления от 17 до 105 кПа. Размеры такого датчика 6,7×6,7 мм.

курсовой проект / Система автоматического управления гидравлическим прессом / датчики давления

1.1 Датчики давления с механическими воспринимающими органами

Датчики давления с механическими воспринимающими органами делятся на:

– жидкостные датчики давления;

– поршневые датчики давления;

– мембранные датчики давления;

– сильфонные датчики давления;

– датчики давления с манометрическими трубчатыми пружинами;

– датчики давления, основанные на измерении вязкости газа.

1.1.1 Жидкостные датчики давления. В жидкостных датчиках давления эффективная площадь, воспринимающая давление, определяется поверхностью жидкости, налитой в сосуд, или поверхностью жест­кой стенки. Усилие, противодействующее давлению, создается в большинстве систем силой тяжести. Обе эти величины могут быть заранее подсчитаны, легко измерены, изменения их с течением времени, а также вследствие воздействия внешних факторов, обычно невелики и могут быть сведены к минимуму. Сухое трение в жидкостных системах может быть сделано ничтожно малым.

В силу этих обстоятельств жидкостные датчики давления являются одними из наиболее точных и стабильных устройств подобного рода. Однако вследствие, ряда эксплуатационных неудобств (малые пределы измерения, необходимость строго вертикального расположения, большие габариты, вредность паров ртути и т. п.) датчики этой группы в последнее время вытесняются приборами с упругими элементами.

В свою очередь жидкостные датчики давления делятся на:

1.1.2 Поршневые датчики давления. В поршневых датчиках применение цилиндра с поршнем в качестве элемента, преобразующего давле­ние в усилие, является характерным для силовых систем.

Преимуществами этой системы перед другими являются жесткость конструк­ции и стабильность величины эффективной площади (равной площади поршня плюс половина площади кольцевого зазора между поршнем и цилиндром). В то же время эта система обладает весьма существенными недостатками (негерметич­ностью и сухим трением), сужающими область ее применения.

Благодаря высокой стабильности эффективной площади поршневые системы в сочетании с контрольными грузами применяются для тарировки манометриче­ских систем других типов.

Имеются исполнения датчиков с поршневыми системами, имеющие класс точности порядка 0,1. В этих системах сухое трение устраняется непрерывным вращением поршня.

1.1.3 Мембранные датчики давления. Мембраны, представляющие собой заделанные по периметру эластичные пластины, находят широкое применение в качестве воспринимающих органов датчиков давления. В зависимости от величины измеряемого давления, типа выходного преобразователя и условии работы применяют различные материалы и формы мембран. С помощью мембраны возможно преобразование давления в усилие. Величина прогиба мембраны, обладающей определенной собственной жесткостью, определяется давлением.

Для получения стабильной характеристики желательно иметь возможно более мягкую мембрану и создавать противодействующее усилие добавочным упругим элементом. Однако это требование не всегда может быть выполнено.

Мембранные датчики в свою очередь делятся на:

– металлические гофрированные мембраны;

1.1.4 Сильфонные датчики давления. Сильфоны представляют собой гофрированные тонкостенные трубки, выполненные из упругого материала.

Сильфон представлен на рисунке 9.

Рисунок 9 Сильфон

Срок службы сильфонов зависит от относительных величин хода и давления.

Характеристика сильфона, как пружины (F – сила, действующая вдоль оси сильфона) линейна в относительно узком диапазоне перемещений, эффективная же площадь сильфона отличается высоким постоянством. Из этого следует, что сильфон целесообразно использовать в режиме малых прогибов, совместно с выходными преобразователями силы.

1.1.5 Датчики давления с манометрическими трубчатыми пружинами. Манометрические трубчатые пружины находят широкое применение в мано­метрах и датчиках давления. Наибольшее применение находят одновитковые пружины эллиптического и плоскоовального сечений.

Датчики с манометрическими трубчатыми пружинами делятся на:

– одновитковые трубчатые пружины;

– винтовые и спиральные трубчатые пружины;

1.1.6 Датчики давления, основанные на измерении вязкости газа. Вязкость газа при низких давлениях зависит от малых давлений: абсолютной величины давления. На этом принципе ­строятся лабораторные вакуумметры. В них давление определяется по декременту затухания колебаний кварцевой нити или пластинки, упруго подвешенной в измеряемой среде. Пределы измерения 10 -3 – 10 -7 мм рт ст. Известны другие исполнения, в частности, в виде двух коаксиальных цилиндров, один из которых вращается со скоростью 3600 об/мин, другой удерживается пружиной. Отклонение последнего от нуле­вого положения является мерой величины давления. Это устройство может быть снабжено электрическим выходным органом, в качестве которого исполь­зуются датчики перемещения, обладающие ничтожно малым измерительным усилием (емкостные, фотоэлектрические, высокочастотные индуктивные или компенсационные датчики усилия).

1.2 Датчики давления с электрическими воспринимающими органами

Датчики давления с электрическими воспринимающими органами делятся на:

– электрические датчики давления;

– радиометрические датчики давления.

1.2.1 Электрические датчики давления. Электрические датчики давления в свою очередь делятся на:

– датчики с пъезосопротивлением;

– пъезоэлектрические датчики давления;

– емкостные датчики давления;

– ионизационный датчик с накаленным катодом;

– ионизационные датчики с холодным катодом;

– датчики ионизацией радиоактивным излучением (альфатрон).

1.2.2 Радиометрический датчик давления. Принцип действия радиометрического датчика поясняется схемой рисунка 22. Пластина 8 может поворачиваться относительно вертикальной оси. Пластины 9 неподвижны, а их температура Т1 поддерживается выше тем­пературы окружающей среды Т. Молекулы газа, отраженные нагретыми пласти­нами, будут иметь большую кинетическую энергию и, ударяясь в пластину 8, создадут вращающий момент, показанный стрелками.

Приборы такого типа обычно снабжают световым отсчетом угла поворота пластины 8 и применяют в качестве лабораторных приборов.

1 – баллон; 2 – кварцевая нить; 3 – якорь; 4 – катушка; 5 – усилитель; 6 – фотоэлементы; 7 – зеркало; 8 – подвижная пластина; 9 – неподвижные пластины.

Рисунок 22 – Схема радиометрического датчика давления компенсационого типа

Применив компен­сационную схему, можно построить датчик давления с электрическим выходом. На кварцевой нити 2 подвешена пластина 8. Поверхности сосуда нагреваются током, проходящим по проволочным элементам пластин 9. Пластина 8 расположена несимметрично относительно нагретых поверхностей. Изменение давления газа вызывает появление вращающего момента. Этот момент компенсируется воздействием магнитного поля катушки 4 на железный якорь 3, укрепленный на подвижной системе. Катушка питается током от усилителя 5, на входе которого включены фотоэлементы 6, воспринимающие луч света, отра­женный зеркалом 7.

Диапазон измерения радиометрических приборов составляет 10 -3 – 10 -8 мм рт. ст. Преимуществом этих приборов является независимость показа­ний от состава и свойств газовой среды. Выходным сигналом датчика является ток I, протекающий по катушке 5.

1.3 Датчики давления с термическими воспринимающими органами

Датчики давления с термическими воспринимающими органами делятся на:

– датчики давления, основанные на измерении теплопроводности газа;

– датчики абсолютного давления термокомпенсционного типа.

1.3.1 Датчики давления, основанные на измерении теплопроводности газа. Датчики давления, основанные на измерении теплопроводности газа делятся на:

– датчики давления с термопарой;

– датчики давления с термосопротивлением.

1.3.2. Датчик абсолютного давления термокомпенсационного типа. Принцип действия датчика абсолютного давления термокомпенсационного типа основан на компенсации измеряемого давления давлением газа, заключенного в герметическом объеме и регулируемого измене­нием его температуры. Схема датчика приведена на рисунке 21. В камере 1, закрытой мембраной 3, заключено постоянное количество газа. Увеличение внеш­него давления приводит к замыканию контактов и включению обмотки подогрева газа. Температура газа будет повышаться до тех пор, пока не уравняются да­вления внутри и снаружи камеры и не разомкнутся контакты. Выходной вели­чиной является температура газа внутри камеры, измеряемая датчиком тем­пературы.

Точность измерения составляет примерно 1 мм рт. ст. при давлениях порядка 740 мм рт. ст. Время установления режима 1 – 10 мин. Колебания внешней температуры в широких пределах не влияют на показания.

1 – камера; 2 – контакты; 3 – мембрана; 4 – измеритель температуры (термосопротивление); 5 – реле; 6 – нагревательная обмотка.

Рисунок 21 – Схема датчика давления термокомпенсационного типа

Принцип работы датчиков давления: схема, устройство, применение

В современной промышленности не обойтись без точных приборов измерения, которые служат для учета расхода различных жидкостей, а также газа, газовых смесей и пара. Помимо расходомеров с разными принципами действия, широко применяются электронные датчики давления. Они являются неотъемлемой частью измерительных комплексов, а также входят в состав теплосчетчиков, используются в системах автоматизированного контроля технологических процессов. Данные приборы востребованы в энергетике, пищевой промышленности, нефтяной и газовых отраслях и других сферах производства.

ЧТО ТАКОЕ ДАТЧИК ДАВЛЕНИЯ

Это устройство для измерения и преобразования давления среды – жидкости, газа или пара. Полученное значение выводится на дисплей или передается в виде аналогового или цифрового выходного сигнала.
Принцип работы зависит от типа измеряемого давления, которое может быть абсолютным, избыточным и дифференциальным.

Читайте также:  Блок картер двигателя

ТИПЫ ИНТЕЛЛЕКТУАЛЬНЫХ ДАТЧИКОВ ДАВЛЕНИЯ

Так, в пищевом и химическом производстве широкое применение получил интеллектуальный датчик абсолютного давления, осуществляющий измерение относительно абсолютного вакуума. Отметим, что именно такое измерение применяется в узлах учета газа, пара и тепловой энергии для приведения расхода к стандартным условиям.

Решать задачи учета расхода измеряемой среды позволяет датчик дифференциального давления. Принцип его работы заключается в измерении разности давлений между двумя полостями – плюсовой и минусовой. Могут применяться для учета расхода, при помощи сужающих устройств. Сужающее устройство в трубопроводе представляет собой местное сопротивление, при прохождении через которое изменяется характер течения потока. Непосредственно перед сужающим устройством давление среды возрастает, а после него – снижается. Чем больше разница на входе и выходе сужающего устройства, тем больше расход среды, протекающей по трубе.

Кроме того, такой датчик позволяет производить учет объема жидкости не только в трубе, но и в емкости при помощи измерения давления столба жидкости на плюсовую мембрану и, при необходимости, измерения минусовой полостью давления под куполом емкости, для исключения влияния насыщенных паров. Такой метод называют гидростатическим.

В системах автоматического контроля, регулирования и управления технологическими процессами не обойтись без такого прибора, как датчик избыточного давления. Он может использоваться в составе водяных систем теплоснабжения, а также входить в комплектацию узлов коммерческого и технологического учета жидкостей, газа и пара.

ПРЕОБРАЗОВАТЕЛИ ДАВЛЕНИЯ “ЭМИС-БАР”

В конце 2018 года в продуктовой линейке компании «ЭМИС» появились интеллектуальные преобразователи «ЭМИС» – БАР». Они способны осуществлять непрерывное измерение абсолютного, избыточного, дифференциального и гидростатического давления, определять разрежение жидких и газообразных сред, насыщенного и перегретого пара.

Несколько вариантов исполнения позволяет сделать оптимальный выбор, в зависимости от поставленных задач и условий эксплуатации, в том числе при работе на низкотемпературных, высокотемпературных и агрессивных средах.

Стоит отметить, что у заказчика имеется возможность выбора материалов изготовления разделительной мембраны и корпуса электронного блока, типа, материала и размера фланца, типа и материала кронштейна. Также на выбор представлены несколько вариантов длины погружной части разделительной мембраны плюсовой полости.
Остановимся более подробно на технических характеристиках и модификациях.

Устройство прибора

  • 1. Корпус;
  • 2. Крышки корпуса, передняя крышка чаще всего служит экраном дисплея;
  • 3. RFI- и EMI-фильтры– служат для гашения электромагнитных и радиопомех;
  • 4. Электронный блок – модуль процессора;
  • 5. Модуль дисплея – может отсутствовать;
  • 6. Приемник давления – имеет различный внешний вид, в зависимости от типа;
  • 7. Фланцы и метизы – для фланцевого исполнения;
  • 8. Клеммная колодка;
  • 9. Кнопки настройки.

В качестве сенсора используется монокристаллическая кремниевая мембрана с расположенными на ней пьезорезисторами. При этом мембрана, подложка и резистор выполнены из одного материала – кремния. Для защиты сенсора возможно исполнение с разделительной мембраной и заполняющей жидкостью.

Устройство сенсорного модуля

Сенсорный модуль состоит из:

  • -настройка шкалы измерения с подачей опорного давления;
  • -настройка времени демпфирования;
  • -настройка шкалы измерения без подачи опорного давления;
  • -установка нуля;
  • -установка фиксированного значения тока выходного сигнала;
  • -установка аварийных значений тока;
  • -блокировка управления с кнопок;
  • -функция корнеизвлечения для преобразователей дифференциального давления;
  • -выбор единиц измерения.

Приборы «ЭМИС» – БАР» внесены в Госреестр средств измерения (№2219), имеют сертификат соответствия ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах», всю необходимую разрешительную документацию, а также дополнительные сертификаты:

  • -Сертификат соответствия ТР ТС 032/2013 “О безопасности оборудования, работающего под избыточным давлением”.
  • -Декларация о соответствии ТР ТС 032/2013 “О безопасности машин и оборудования”.
  • -Декларация о соответствии ТР ТС 020/2011 “Электромагнитная совместимость технических средств”.
  • -Сертификат соответствия «Применение в средах, содержащих сероводород».
  • -Экспертное заключение по результатам санитарно-эпидемиологической экспертизы.
  • -Право интеллектуальной собственности разработчика защищено патентом РФ № 186107.

Выпускаются с возможностью фланцевого и штуцерного соединения. На выбор заказчика есть несколько материалов мембраны, полости камеры и корпуса электронного блока, а также типа заполняющей жидкости.

    Имеют несколько вариантов исполнения:
  • -с фланцевым присоединением
  • -со штуцерным присоединением
  • -с открытой мембраной
  • -с выносной разделительной мембраной

Данные спецификации представлены с фланцевым креплением и с выносными разделительными мембранами. Модели 186,187, 188 являются преобразователями разрежения.


Спецификация 163 – с плоской мембраной, 164 – с погружной мембраной. Они применяются для точного определения уровня жидкости в различных емкостях и резервуарах.

Преимущества

Каждый из представленных приборов обладает высокой точностью измерений на уровне лучших мировых образцов. При специальном заказе основная приведенная погрешность составляет 0,04%. Также они отличаются долговременной стабильностью – не более 0,1% в течение 5 лет (или 0,02% в течение года).
Их ключевыми особенностями являются широкий диапазон измерения (от -0,5 до 69 МПа), способность работать в условиях перегрузки до 105 МПа и расширенная самодиагностика.

Имеется возможность настройки (в том числе калибровки нуля) с кнопок непосредственно во взрывоопасной зоне, без нарушения взрывозащиты корпуса, а также обеспечена работа с фирменным программным обеспечением «ЭМИС» – Интегратор». Межповерочный интервал составляет 5 лет.

В 2018 году, в целях проведения ОПИ, преобразователи «ЭМИС-БАР» были поставлены на объект УРМЦ «Газпром – Трансгаз – Екатеринбург». В своем отзыве заказчик отмечает, что за время опытно-промышленных испытаний они показали себя надёжным средством измерения, отвечающим всем техническим требованиям и в полной мере обеспечивающим заявленные метрологические и технико-эксплуатационные параметры. Приборы показали высокую стабильность при различных температурных режимах и в разных погодных условиях, высокую визуализацию, интуитивность и практическое удобство дисплея.

Также положительные характеристики преобразователи ИД «ЭМИС-БАР» получили по результатам работы на «Березниковском содовом заводе», где измеряемой средой стала фильтровая жидкость карбоколонны. «Интерфейс настройки прибора интуитивный и понятный. Материал корпуса соответствует заявленному в паспорте. Несмотря на наличие в фильтровой жидкости агрессивных примесей, отложений и коррозии на сенсоре не было. Метрологические характеристики после 6 месяцев работы соответствуют заявленным. Диапазон напряжения питания может быть от 12 до 36 вольт, при этом влияния на работу прибора данный разбег по питанию не оказывает», – отмечает в отзыве заказчик.

Стоит отметить, что измерители «ЭМИС» – БАР» являются частью комплексов учета энергоносителей и теплосчетчиков. Сейчас комплексы можно приобрести с расширенной гарантией до 3 лет, по Вашему запросу.

На рисунке комплекс учета «ЭМИС»-Эско 2210»

Необходимо добавить, что с появлением в продуктовой линейке «ЭМИС» датчиков давления, для заказчиков открылись возможности унификации применяемого оборудования и получения дополнительных выгод при комплексной покупке средств измерения нашей торговой марки!

Если у Вас существует потребность в приобретении продукции, на нашем сайте Вы можете оставить заявку или заполнить опросный лист и отправить его на адрес sales@emis-kip.ru.

Задать вопрос инженерам по работе производимых приборов

Датчики давления

В данном разделе представлены датчики давления, предназначенные для измерения давления в инженерных системах с аналоговым 4-20 мА, 0-10/5В или цифровым выходным сигналом. Приборы с релейным выходным сигналом “сухой контакт” и предназначенные для замыкания-размыкания цепи при достижении определенного давления в системе и в своем большинстве имеющие настраиваемую точку уставки в рабочем диапазоне широко представлены в разделе “Реле давления для насоса и компрессора”.

Датчики (преобразователи) давления компании Dwyer instruments представляют собой чувствительный элемент, в виде диафрагмы или наполняемой камеры, соединённой с преобразователем движения чувствительного элемента. При изменении давления измеряемая среда приводит в движение чувствительный элемент, который в свою очередь связан с преобразователем движения, в результате чего измеряемая величина преобразуется в электрический сигнал.

На сегодняшний день датчики давления можно подразделить на несколько категорий, групп и подгрупп:

  1. В зависимости от класса опасности окружающей или измеряемой среды, датчики делятся на три основные группы:
    • Взрывозащищённые датчики давления необходимы в случаях контакта прибора с опасной измеряемой и (или) окружающей средой. В этом случае высока вероятность возникновения воспламенения внутри прибора, что, в обычном исполнении привело бы к взрывопожароопасной ситуации. Взрывозащищённое исполнение исключает внештатные ситуации за счёт изоляции электрических компонентов и частей взрывонепроницаемой оболочкой, которая предотвращает проникновение пламени и(или) взрыва за пределы прибора.
    • Искробезопасные датчики давления используются в тех случаях, когда прибор находится в непосредственном контакте с взрывопожароопасной окружающей средой. В этом случае случае, в конструкции применяются всевозможные выпрямители электрических сигналов, которые сводят к минимуму скачки электроэнергии, которые в свою очередь приводят к образованию искр и в следствии чего к внештатной ситуации. Примечание: для использования датчика давления в искробезопасном исполнении обязательно наличие барьера искрозащиты.
    • Датчики в общепромышленном исполнении применяются во всех случаях за исключением условий описанных в П 1.1 и 1.2
  2. Так же датчики давления можно классифицировать по типу выходного сигнала:
    • С аналоговым выходным сигналом являются самыми распространёнными на сегодняшний день, так как они просты в изготовлении, и не требуют больших затрат при производстве. Выходной сигнал 4-20 мА, 0-10 или 0-5 Вольт считываются большинством ПЛК (программируемый логический контроллер), а питание от 12 до 24 Вольт доступно для большинства приложений.
    • С цифровым выходным сигналом являются более совершенными с технической точки зрения, так как обладают значительно большими возможностями по подключениям. Датчики с цифровым выходным сигналом можно подключать как через ПЛК, для системы автоматизации, так и напрямую к ПК, для снятия показаний без дополнительных устройств.
  3. Все датчики давления подразделяются на несколько групп в зависимости от класса точности:
    • Точные датчики давления имеют погрешность не более 3% от полной шкалы и используются в большинстве известных приложениях, так как: водоочистка, водоподготовка, системы вентиляции и кондиционирования (ОВИК), котельное оборудование и многих других.
    • Высокоточные датчики давления имеют погрешность не более 0,5%, что позволяет применять приборы в самых ответственных приложениях: нефтехимическая и газовая промышленность, лабораторные измерения, и многих других приложениях, где точность показаний приборов является основной характеристикой при измерениях.
    • Эталонные датчики давления используются в основном для поверки и калибровки других датчиков давления, в следствии чего к этим датчикам предъявляются самые жёсткие требования по погрешности измерений, которая, обычно не превышает показателя в 0,05%.

Так же, если вы выбираете датчик давления воды, жидкости, датчик давления воздуха или датчик давления газа, необходимо учитывать ряд других параметров, среди которых химическая стойкость, температурный диапазон, класс защиты корпуса и многих других.
Если Вы сомневаетесь в выборе необходимого прибора, позвоните нам, и специалисты компании ОЛИЛ помогут подобрать прибор наиболее подходящий под ваши конкретные условия.

Мы предлагаем только прямые поставки контрольно-измерительных приборов с завода Dwyer. Список и описание продукции полностью соответствует печатному каталогу и оригинальному сайту компании-изготовителя. Поделитесь с коллегами ссылкой на эти приборы, нажмите на кнопку социальной сети:

Принцип работы датчика давления воды

Датчик давления – это устройство, у которого физические параметры изменяются в зависимости от давления измеряемой среды, это могут быть газы, жидкости, пар. При изменении измеряемой среды, в которой находиться датчик давления, меняется и его выходные унифицированный пневматический, электрический сигналы или цифровой код.

Принципы использования датчика давления

Устройство состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода.

Основным отличием каждого датчика давления является точность регистрации давления (Диапазоны измерения от 0 . 6 бар до 0 . 60 бар), которая зависит от принципа преобразования давления в электрический сигнал: пьезорезистивный, тензометрический, емкостной, индуктивный, резонансный, ионизационный.

Читайте также:  Главные передачи

Методы преобразования давления в электрический сигнал

  • тензометрический

Чувствительные элементы датчиков базируются на принципе измерения деформации тензорезисторов, припаянных к титановой мембране, которая деформируется под действием давления.

  • пьезорезистивный

Основаны на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую временную и температурную стабильности. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем. Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления.

Резонансный метод – это волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

Ионизационный метод – регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Регистрация сигналов датчиков давления

Сигналы с датчиков давления являются медленноменяющимися. Это значит, что их спектр лежит в области сверхнизких частот. Для того чтобы с высокой точностью оцифровать такой сигнал необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях. Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи

Какие отличия датчика давления от манометра?

Манометр — прибор, предназначенный для измерения (а не преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

Нужен датчик давления?

Для подбора необходимого датчика давления для работы с частотным преобразователем или другим устройством обратитесь по телефону электротехнической компании ЭНЕРГОПУСК: (495) 775-24-55.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Датчики давления. Виды и работа. Как выбрать и применение

Датчики давления являются устройством, выдающим сигналы на выходе, зависящие от давления измеряемой среды. Сегодня не обходятся без точных датчиков определения давления. Они применяются в автоматизированных системах всех отраслей промышленности.

Многие датчики давления функционируют на преобразовании давления в движение механической части. Кроме механических элементов (трубчатые пружины, мембраны) для замеров используются тепловые и электрические системы. Электронные элементы дают возможность осуществить производство датчиков давления на электронных элементах.

Датчик давления состоит из:
  • Первоначальный преобразователь вместе с чувствительным элементом.
  • Корпус датчика, имеющий разные конструкции.
  • Электрическая схема.

Классификация и принцип работы

Волоконно-оптические

Этот тип датчиков считается самым точным в работе, которая не имеет большой зависимости от изменений температуры. Элементом точной чувствительности действует оптический волновод. Давление в волоконно-оптических приборах определяется путем поляризации света, прошедшего по элементу чувствительности, и колебаниям амплитуды.

Оптоэлектронные датчики давления

Датчики давления состоит из нескольких слоев, через которые проходит свет. Один слой меняет свойства от величины давления среды. Меняются 2 параметра: величина преломления и размер слоя. Методы изображены на рисунках.

При изменении свойств будет изменяться характеристика света, проходящего через слои. Фотоэлемент производит регистрацию изменений. Преимуществом оптоэлектронных приборов стала высокая точность.

Датчики легко определяют давление, имеют повышенное разрешение, чувствительность, стабильны к действию температуры. Перспективность оптоэлектронных приборов обуславливается работой на интерференции света, использованием интерферометра для замера малых перемещений. Основные составляющие элементы датчика – кристалл оптического анализатора с диафрагмой, фотодиод и детектор. Детектор составляют три светодиода.

К 2-м фотодиодам прикреплены оптические фильтры, которые имеют отличия по толщине. Фильтры состоят из кремниевых зеркал, имеющих отражение от лицевой части поверхности, которые имеют слой оксида кремния. Поверхность напылена слоем алюминия малой толщины.

Световой преобразователь подобен емкостному датчику. Его диафрагма смоделирована способом травления, которая покрыта металлическим тонким слоем. Стеклянная пластина снизу покрыта металлическим слоем. Между подложкой и стеклом есть промежуток, образованный двумя прокладками.

Два металлических слоя образуют интерферометр с изменяемым воздушным промежутком. В его состав вошли: зеркало на стекле стационарного вида и меняющее положение зеркало на мембране.

На подобной основе изготавливают чувствительные датчики размером 0,55 мм. Они легко проходят через ушко иглы.

Оптическое волокно взаимосвязано с сенсором. В нем с помощью управления микропроцессора подключается монохроматический свет, который вводится в волокно. Делается замер интенсивности обратного света, по калибровке рассчитывается наружное давление и результат показывается на экране. Сенсоры используют в медицине для проверки давления внутри черепа, измерения кровяного давления в артериях легких. Другими методами в легкие добраться невозможно.

Магнитные

Магнитные датчики давления еще называют индуктивными. Элементом чувствительности служит Е-пластина, в центре расположена катушка, и проводящая мембрана. Она расположена на малом расстоянии от конца пластины. При подсоединении обмотки образуется магнитный поток, он идет через пластину, промежуток воздуха и мембрану.

Магнитная проницаемость воздуха в зазоре в 1000 раз слабее мембраны и пластины. Малое изменение параметра зазора приводит к значительному изменению индуктивности.

При воздействии давления мембрана изгибается, сопротивление катушки меняется. Преобразователь переводит изменение в сигнал тока. Измерительный рабочий элемент преобразователя сделан по схеме моста, обмотка включена в плечо. АЦП подает сигнал от элемента измерения в виде сигнала от давления.

Емкостные

Датчики давления самой простой конструкции, состоящий из плоских электродов (2 шт.) с зазором. Электрод сделан мембраной, на нее давит измеряемое давление. Меняется размер зазора. Такой вид датчика образует конденсатор с меняющимся зазором. Величина емкости конденсатора меняется при изменении промежутка от пластин или от электродов в данном случае.

Для определения очень небольших изменений давления приборы наиболее применимы и эффективны. Они дают возможность произвести замеры избыточного давления в различной среде. На предприятиях при выполнении технологических процессов, в которых задействованы системы воздушного и гидравлического оборудования, в насосах, компрессорах, на станках емкостные датчики нашли широкое применение. Датчик емкостного вида имеет конструкцию, которая имеет стойкость к вибрациям, скачкам температуры, защищена от химической и электромагнитной среды.

Ртутные

Также простая конструкция прибора. Действует по закону о сообщающихся сосудах. На одну емкость давит давление, которое нужно измерить. По величине другого сосуда – определяется давление.

Пьезоэлектрические

Элементом чувствительности в этом датчике служит пьезоэлемент. Это вещество, создающее электрический сигнал во время деформации. Такое свойство называется прямым пьезоэффектом. В измеряемой области находится пьезоэлемент, который образует ток, прямо зависящий от значения давления. Сигнал в датчике из пьезоматериала образуется только при деформации. При неизменном давлении нет деформации, поэтому датчик годен только для проведения замеров среды с быстро изменяемым давлением.

Если давление не будет изменяться, то не будет деформации, пьезоэлектрик не сгенерирует сигнал.

Пьезоэлектрики нашли использование в первичных преобразователях потока водяных вихревых счетчиков, и других сред. Их устанавливают парами в трубу с проходом в несколько сотен мм за предметом обтекания. Фиксируют вихри. Количество и частота вихрей прямо зависят от скорости потока и расхода по объему.

Пьезорезонансные датчики давления

В отличие от вышеописанного вида датчика здесь применяется обратный пьезоэффект, то есть, форма материала пьезоэлемента изменяется от тока подачи. Применяется резонатор в виде пластины из пьезоматериала. На пластину с двух сторон нанесены электроды. На них подключается по очереди напряжение питания с разным знаком, пластина производит изгиб в обе стороны в зависимости от полярности поданного напряжения и частоты.

Если воздействовать на пластину силой, чувствительной мембраной к давлению, то резонатор изменит частоту колебаний. Частота резонатора укажет значение давления на мембрану, которая оказывает давление на резонатор.

На рисунке изображен пьезорезонансный датчик с абсолютным давлением, который сделан герметичной камерой 1. Она достигается корпусом 2, основанием 6, мембраной 10. Мембрана крепится на электронную сварку к корпусу. Держатели закреплены на основании перемычками. Силочувствительный резонатор удерживает держатель.

Мембрана 10 давит на втулку 13 и шарик 6, который закреплен в держателе. Шарик давит на чувствительный резонатор 5. Проводка закреплена на основании 6, необходима для слияния резонаторов с генераторами. Сигнал на выходе абсолютного давления образуется по схеме путем разности генераторных частот. Датчик находится в активном термостате 18 с неизменной температурой 40 градусов. Давления для измерения поступает через штуцер 12.

Резистивные датчики давления

Другим названием этот датчик называется тензорезистор. Это элемент, который меняет собственное сопротивление при деформации. Такие тензорезисторы монтируют на мембрану, которая чувствительна к изменяющемуся давлению. В результате при приложении силы на мембрану происходит ее изгиб, из-за этого изгибаются тензорезисторы, которые на ней закреплены. На тензорезисторах меняется сопротивление и значение тока цепи.

Растяжение элементов из проводников на каждом тензорезисторе ведет к увеличению длины и снижению сечения. В итоге сопротивление повышается. При сжатии процесс происходит наоборот. Изменения сопротивления незначительные, поэтому для обработки сигнала применяются усилители. Деформация переделывается в изменение сопротивления проводника или полупроводника, а затем в сигнал тока.

Тензорезисторы выполнены в виде проводящего зигзагообразного элемента, или из полупроводника, который расположен на гибкой подложке, приклеенной к мембране. Подложка сделана из слюды, полимерной пленки или бумаги. Элемент проводника – из полупроводника, тонкой проволоки или фольги, напыленных на металл в вакуумном состоянии. Чувствительный элемент соединяют с цепью измерения выводами из проволоки или площадками контактов. Тензорезисторы чаще имеют размер площади до 10 мм 2 . Они более подходят для замера давления, веса, силы нажатия.

Ссылка на основную публикацию