Дуговая наплавка под флюсом

Наплавка под слоем флюса – сущность, преимущества и недостатки

Содержание:

Наплавкой металла называют процесс, во время выполнения которого на поверхность заготовки при помощи сварочного оборудования наносится слой металла.

Существует несколько видов наплавки металла, различаемых по своим техническим характеристикам:

  • по степени механизации процесса наплавка может быть ручной, механизированной, автоматизированной и автоматической;
  • по тому способу, которым металл в процессе наплавки защищается, выделяется наплавка под слоем флюса, наплавка под предварительно расплавленным покрытием электрода, которая, в свою очередь, может производиться в вакууме или в среде защитного газа.
  • по самому характеру процесса наплавка может быть непрерывной или прерывистой.

Сущность наплавки под слоем флюса.

Наплавка под слоем флюса представляет собой процесс, во время которого сварочная дуга между сварочным электродом и металлической деталью защищается с помощью слоя предварительно расплавленного флюса – толщина слоя при этом может колебаться от 20 до 40 миллиметров. Стоит отметить, что до расплавленного состояния флюс доводится при помощи той же сварочной дуги.

Такая защита необходима для того, чтобы оградить металл от воздействия окружающего воздуха, предотвращая, таким образом, возникновение окисления металла кислородом. Кроме того, слой флюса выполняет и еще одну задачу – он не позволяет расплавленному металлу разбрызгиваться и сохраняет тепло. Таким образом, флюс позволяет добиться экономии металла и повышает производительность труда сварщика.

При проведении наплавки под слоем флюса, как правило, в качестве электрода выступает сварочная проволока, не имеющая покрытия. Диаметр проволоки выбирается в зависимости от задач, поставленных перед сварщиком, и может варьироваться от 1 до 6 миллиметров.

Что касается вида тока, используемого при наплавке под слоем флюса, то чаще всего здесь применяется ток с обратной полярностью – плюс от источника электрического тока подается на сварочную проволоку, а минус – на наплавляемую поверхность изделия. Для того, чтобы еще больше повысить производительность этого метода, часто используют ленточные электроды или подачу сразу двух проволок в зону наплавки с помощью двух полуавтоматических приспособлений.

Преимущества наплавки под слоем флюса.

Дуговая наплавка под флюсом занимает лидирующие позиции среди всех видов наплавки металла, благодаря тем преимуществам, которыми она обладает. К основным достоинствам наплавки под слоем флюса можно отнести:

  • высокую производительность труда. Особенно хорошо это достоинство проявляется в тех случаях, когда производится наплавка на большую площадь поверхности изделия, обладающего достаточно простой формой;
  • невысокую сложность процесса. Наплавка под слоем флюса не требует высокой квалификации от сварщика, поэтому для ее производства не требуется искать специалиста, обладающего большим опытом именно в этом спектре сварочных работ;
  • высокое качество работы. При применении наплавки под слоем флюса внешний вид валика из наплавленного металла обладает отличными эстетическими характеристиками, что имеет большое значение для внешнего вида всей детали. Кроме того, получаемый в результате наплавки валик обладает высокой прочностью и надежностью и прекрасно проявляет себя в ходе дальнейшей эксплуатации изделия;
  • высокую безопасность работы сварщика. Сокрытие сварочной дуги под слоем флюса позволяет избежать разбрызгивания расплавленного металла, что значительно повышает безопасность рабочего, предотвращая возможность получения ожогов.

Недостатки наплавки под слоем флюса.

Вместе с несомненными достоинствами наплавка металла под слоем флюса имеет и определенные недостатки. И основными минусами этого вида наплавки можно считать:

  • высокую стоимость оборудования. Как правило, оборудование, применяемое в ходе наплавки под слоем флюса, стоит дороже, чем оборудование для ручной дуговой наплавки с применением стержневых электродов с покрытием;
  • большую зону нагрева, из-за чего этот вид наплавки не может быть применен в тех случаях, когда требуется наплавка металла на мелкие изделия, особенно, в том случае, если эти изделия обладают достаточно сложной формой;
  • кроме того, часто к недостаткам этого вида наплавки относят и тот факт, что он снижает усталостную прочность металлической детали, причем, показатель снижения прочности металла может в некоторых случаях достигать 40%.

И все же, несмотря на все недостатки, наплавка металла под слоем флюса продолжает оставаться самым распространенным способом наплавки, так как позволяет существенно экономить ресурсы – и не только сам металл, но и энергетические ресурсы предприятия, что, в свою очередь, приводит к снижению стоимости получаемых в результате применения этого способа наплавки изделий.

Дуговая наплавка под флюсом

Способ широко применяется для восстановления цилиндрических и плоских поверхностей деталей. Это механизированный способ наплавки, при котором совмеще­ны два основных движения электрода — это его подача по мере оплавления к детали и перемещение вдоль сварочного шва.

Сущность способа наплавки под флюсом заключа­ется в том, что в зону горения дуги автоматически подаются сы­пучий флюс и электродная проволока.

Под действием высокой температуры образуется газовый пузырь, в котором существует дуга, расплавляющая металл. Часть флюса плавится, образуя вок­руг дуги эластичную оболочку из жидкого флюса, которая защи­щает расплавленный металл от окисления, уменьшает разбрыз­гивание и угар. При кристаллизации расплавленного металла обра­зуется сварочный шов.

Преимущества способа:

-возможность получения покрытия заданного состава, т. е. леги­рования металла через проволоку и флюс и равномерного по хи­мическому составу и свойствам;

-защита сварочной дуги и ванны жидкого металла от вредного влияния кислорода и азота воздуха;

-выделение растворенных газов и шлаковых включений из сва­рочной ванны в результате медленной кристаллизации жидкого металла под флюсом;

-возможность использования повышенных сварочных токов, ко­торые позволяют увеличить скорость сварки, что способствует по­вышению производительности труда в 6. 8 раз;

-экономичность в отношении расхода электроэнергии и элект­родного металла;

-отсутствие разбрызгивания металла благодаря статическо­му давлению флюса;

-возмож­ность получения слоя наплав­ленного металла большой тол­щины (1,5 . 5 мм и более);

-независимость качества на­плавленного металла от квали­фикации исполнителя;

-лучшие условия труда свар­щиков ввиду отсутствия ульт­рафиолетового излучения;

-воз­можность автоматизации тех­нологического процесса.

Недостатки способа:

-значительный нагрев детали;

-невозможность наплавки в верхнем положении шва и деталей диаметром менее 40 мм из-за стекания наплавленного металла и трудности удержания флюса на поверхности детали;

-сложность применения для деталей сложной конструкции, не­обходимость и определенная трудность удаления шлаковой корки;

-возможность возникновения трещин и образования пор в наплав­ленном металле.

Для наплавки используют электро­дную проволоку: для низкоуглеродистых и низколегированных сталей — из мало­углеродистых (Св-08, Св-08А), марган­цовистых (Св-08Г, Св-08ГА, Св-15Г) и кремний марганцовистых (Св-08ГС, Св-08Г2С, Св-12ГС) сталей; с большим со­держанием углерода — Нп-65Г, Нп-80, Нп-ЗОХГСА, Нп-40Х13 и др.

В зависимости от способа изготовле­ния флюсы для автоматической наплав­ки делят на плавленые, керамические и флюсы-смеси.

Плавленые флюсы содер­жат стабилизирующие и шлакообразующие элементы, но в них не входят легирующие добавки, поэтому они не могут придавать слою, наплавленному малоуглеродистой, марганцовистой и кремниймарганцовистой проволоками, высокую твердость и износостойкость.

Из плавленых флюсов наиболее распространены АН-348А, АН-60, ОСу-45, АН-20, АН-28.

Керамические флюсы (АНК-18, АНК-19, АНК-30, КС-Х14Р, ЖСН-1), кроме стабилизирующих и шлакообразующих элемен­тов, содержат легирующие добавки, главным образом в виде фер­росплавов (феррохрома, ферротитана и др.), дающие слою, на­плавленному малоуглеродистой проволокой, высокую твердость без термообработки и износостойкость.

Флюсы-смеси состоят из плавленого флюса АН-348 с порош­ками феррохрома, графита, а также жидкого стекла.

Для наплавки деталей с большим износом рекомендуется приме­нять автоматическую наплавку порошковой проволокой, в состав которой входят феррохром, ферротитан, ферромарганец, графито­вый и железные порошки. Используют два типа порошковой про­волоки: для наплавки под флюсом и для открытой дуги без дополни­тельной защиты.

Режимы наплавки зависят от марки проволоки и диаметра детали. Разбрызгивание электродного материала во время наплавки можно уменьшить, используя постоянный ток низкого на­пряжения (20. 21 В). Выпускаются проволоки для сварки и наплавки как стальных, так и чугунных деталей (ПП-АН1, ПП-1ДСК и др.)

При наплавке могут возникнуть дефекты:

-неравномерность ширины и высоты наплавленного валика из-за износа мундштука или подающих роликов, чрезмерного вылета электрода;

-наплыв металла вследствие чрезмерной силы сварочного тока или недо­статочного смещения электродов от зенита;

-поры в наплавленном металле из-за повышенной влажности флюса (его необходимо про­сушить в течение 1. 1,5 ч при температуре 250. 300°С).

В ремонтном производстве наплавку под флюсом применяют для восстановления шеек коленчатых валов, шлицевых поверхно­стей на различных валах и других деталей автомобиля.

|следующая лекция ==>
Малоответственные детали сваривают электродами с тонкой обмазкой, которые изготовляют из проволоки Св-08|Описаниепроцессалучистоготеплообмена

Дата добавления: 2014-01-04 ; Просмотров: 587 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Наплавка под слоем флюса как способ восстановления валов и плоских деталей

Наплавка под слоем флюса, будучи механизированным процессом, как правило, выполняется для восстановления цилиндрических и плоских поверхностей.

Читайте также:  Виды повреждений кузова автомобиля

1 Дуговая наплавка под флюсом – что она собой представляет?

Под наплавкой понимают операцию нанесения восстановительного или защитного металлического слоя на поверхность обрабатываемой детали (конструкции), осуществляемую посредством сварочного оборудования. По характеру процесса такая процедура восстановления деталей бывает прерывистой и непрерывной, по уровню механизации – автоматической, механизированной, ручной и автоматизированной.

Также наплавку различают по варианту защиты металла при ее выполнении:

  • под расплавленным (предварительно) покрытием сварочного стержня;
  • под слоем флюса.

Нас в рамках данной статьи интересует второй способ защиты металлических деталей.

Наплавка под флюсом вала или какого-либо иного изделия – это операция, в ходе которой сварочная дуга, горящая между деталью из металла и электродом, предохраняется от внешних воздействий составом, прошедшим процедуру расплавления.

Наплавка под флюсом осуществляется посредством совмещения двух движений сварочных стержней. Они, во-первых, передвигаются вдоль получаемого шва, а во-вторых, подаются ближе к детали по мере оплавления. Заметим, что расплавление флюса производится сварочной дугой, а его толщина варьируется в пределах 2–4 сантиметров.

Описываемый метод защиты дает гарантию на то, что воздух из окружающей среды не сможет влиять на металл. Следовательно, негативного процесса окисления вала или плоской конструкции наблюдаться не будет. Применение флюса также обеспечивает сохранность тепла в зоне проведения наплавки и исключает вероятность разбрызгивания металла.

В большинстве случаев обработка деталей по такой технологии ведется проволокой без покрытия, которая выполняет функцию электрода. Выбор сечения используемой сварочной проволоки обуславливается конкретными задачами, ставящимися перед процедурой наплавки. Разрешается применять проволоку диаметром 1–6 миллиметров.

Увеличения производительности и эффективности операции можно добиться двумя путями:

  • подачей посредством двух сварочных приспособлений, работающих в полуавтоматическом режиме, в область наплавки одновременно двух проволок;
  • применением электродов ленточного типа.

Наплавление вала, других цилиндрических деталей либо изделий с плоской поверхностью в большинстве случаев ведется на обратном по полярности токе:

  • на обрабатываемую конструкцию идет “минус”;
  • на проволоку для сварки подается “плюс”.

2 Наплавка под слоем флюса – достоинства и недостатки методики

На сегодняшний день операция с использованием расплавленного флюса считается самым широко распространенным вариантом наплавки деталей. Причин тому множество. Мы хотим выделить ключевые достоинства этой методики:

  • Процесс характеризуется простотой выполнения всех необходимых работ. С наплавкой легко справляются сварщики с достаточно низкой профессиональной подготовкой.
  • Производительность труда находится на очень высоком уровне. Это преимущество полностью проявляет себя при обработке простых по конфигурации деталей, поверхность коих описывается сравнительно большими размерами (обработка вала с применением флюса, правда, не будет столь высокопроизводительной).
  • Гарантия максимальной безопасности для специалиста, выполняющего наплавку. Сварщик практически полностью защищен от риска получения ожога из-за отсутствия горячих брызг во время процесса.
  • Качество наплавочных работ очень высокое. Эстетические показатели обработанных изделий безупречны, а главное, наплавленный металлический валик характеризуется отличной надежностью и прочностью. Эксплуатационный потенциал деталей, прошедших процедуру восстановления, по-настоящему безупречен.

Явных “минусов” рассматриваемой методики не так уж и много. Но они все же есть. Специалисты выделяют несколько недостатков применения флюса:

  • Увеличенная зона нагрева. Она не позволяет производить наплавку изделий с малыми геометрическими размерами (например, небольшого вала), а также конструкций очень сложной формы.
  • Оборудование имеет высокую стоимость. Намного дешевле использовать стандартное оборудование, предусматривающее выполнение работ покрытыми электродами для ручной дуговой сварки (наплавки).
  • Снижение показателя прочности обработанных изделий (иногда их прочностные характеристики уменьшаются на 30–40 процентов).

Кроме того, в наплавленном металле могут формироваться поры и крупные по размерам трещины, что, конечно же, ухудшает эксплуатационные показатели вала либо другой детали после наплавки.

3 Оборудование для автоматической наплавки и особенности его эксплуатации

При обработке цилиндрической поверхности (например, вала) изделие монтируется на центрах либо в патроне обычного токарного станка, который определенным образом модифицируют так, чтобы на его суппорте можно было разместить устройство для наплавки. Наплавочный аппарат располагает специальной кассетой, из которой к электродуге подается сварочная проволока. Подача становится возможной за счет наличия подающего механизма.

При вращении вала проволока начинает перемещаться вдоль шва, а суппорт, передвигаясь в продольном направлении, перемещает электрод по длине детали. Мелкий сыпучий флюс при этом подается из бункера в область горения, где происходит плавление некоторой его части, что приводит к созданию эластичной оболочки вокруг сварочной дуги. Для того чтобы жидкий металл не отекал, проволоку слегка смещают в сторону, которая является по отношению к вращению вала противоположной.

Для выполнения процесса обычно применяется наплавочное оборудование (установки) УД209 и СН2, а также наплавочные специальные головки ОКС5523, А580М, А765. Рекомендуется использовать для наплавки следующие виды проволоки:

  • для изделий из высокоуглеродистых сталей – Нп40Х13, Нп80, Нп65Г;
  • для деталей из кремниймарганцовистых и марганцовистых сплавов – Св15Г, Св08Г, Св12ГС, Св08ГС, Св08ГА;
  • для изделий из низколегированных сталей и сплавов с небольшим содержанием углерода – Св08А и Св08.

Применяемые в наши дни составы для автоматической наплавки под флюсом подразделяют на:

  • Комбинированные (спецсмеси). Они включают в себя жидкое стекло, графитовый и феррохромовый порошок и какой-либо плавленый стандартный флюс.
  • Керамические. В них обязательно имеются шлакоформирующие и особые стабилизирующие добавки, а также легирующие компоненты. Такой состав керамических флюсов обеспечивает наплавленному слою повышенную стойкость против износа и хорошие показатели твердости. Известные флюсы данной группы – ЖСН1, АНК30, АНК18, КСХ14Р.
  • Плавленые. Данные составы используются наиболее часто. В них нет легирующих компонентов. Чаще всего наплавка ведется флюсами АН28, ОСу45, АН348А, АН20.

4 Использование электродной ленты для выполнения наплавки под флюсом

В Советском Союзе в середине прошлого столетия создали уникальный метод восстановления деталей при помощи электродов ленточного типа, которые представляют собой стальную широкую ленту. Ее к основному металлу при наплавке размещают почти под прямым углом, что приводит к повышению производительности выполнения наплавочных мероприятий.

Ленточные электроды обеспечивают возможность:

  • увеличивать силу тока для осуществления процесса, а также его скорость;
  • наносить за несколько проходов (а иногда и за один) необходимый по толщине наплавочный слой;
  • получать большой по ширине и при этом абсолютно плоский наплавленный валик.

Чаще всего описываемые электроды применяются для обработки коррозионностойких металлов и сплавов. Ширина таких сварочных ленточных стержней может достигать 18 сантиметров. Теоретически можно использовать и более широкие электроды, но тогда возрастает вероятность того, что наплавляемый валик просто-напросто потеряет свою форму.


Дуговая наплавка под флюсом

Сущность процесса наплавки под флюсом, оборудование и материалы.

Отличительной особенностью процесса автоматической сварки под флюсом является то, что сварочная дуга горит не на открытом воздухе, а под слоем зернистого сыпучего флюса. Под действием тепла дуги расплавляется основной металл детали, электродная проволока и часть флюса, непосредственно прилегающая к зоне наплавки. Электродная проволока подаётся вниз в зону наплавки со скоростью её плавления, плавится и переходит в пол в виде отдельных капель.

Расплавленный флюс образует плотную эластичную оболочку флюсо-газовый пузырь. Поверх этого пузыря находится слой жидкого шлака, (см. “Разрез горения дуги под флюсом”). Флюсово-газовый пузырь надёжно защищает расплавленный металл от вредного воздействия кислорода и азота в воздухе, а также предохраняет металл от разбрызгивания.

Во флюсово-газовом пузыре создаётся большое давление газов, которое оттесняет часть жидкого металла в сторону противоположную направлению наплавки. После остывания жидкого металла образуется наплавленный слой покрытый затвердевшей шлаковой коркой.

Шлаковая корка удаляется с поверхности наплавленного металла лёгкими ударами молотка или зубила в торец корки. При наплавке больших цилиндрических или конических изделий её удаляют специальным скребком.

Преимущество автоматической наплавки под слоем флюса по сравнению с ручной электродуговой наплавкой:

1. Автоматическая наплавка повышает производительность труда на сварочно-наплавочных работах в 6-7 раз.

2. В результате рационального использования тепла дуги уменьшается расход электроэнергии. При ручной сварке на 1 кг наплавленного металла расходуется 6-7 квт-ч электроэнергии, а при автоматической – 3,5 квт-ч.

3. Потери электродного материала в виде огарков на разбрызгивании и угар при ручной наплавке составляет 20-30%, а при автоматической наплавке под флюсом не более 2-4%.

4. При автоматической наплавке качество наплавленного слоя не зависит от квалификаций сварщика, в то время как при ручной наплавке качество слоя в значительной степени определяется квалификацией рабочего.

Высокая производительность труда при автоматической наплавке под слоем флюса объясняется тем, что допускается большие плотности тока (150-200) без опасности разогрева электрода, т. к ток подводится через контакт на небольшом расстоянии от конца электрода.

Читайте также:  Безопасность движения автомобиля

Автоматическая наплавка нашла широкое применение при восстановлении деталей тракторов и с.-х. машин (катки, оси, колёса). Восстановить детали менее 50 мм наплавкой под флюсом не рационально т. к. сыпучий флюс не будет удерживаться на поверхности детали. Кроме того, детали будут подвергаться чрезмерному нагреву, при котором увеличивается коробление и появляется опасность их прожога. Такие детали лучше восстанавливать вибродуговой наплавкой с применением порошковой проволоки.

На плакате (лаборатория ремонта машин) приведена схема установки для наплавки цилиндрических деталей. Для наплавки деталей под слоем флюса выпускаются наплавочные головки различных конструкций. Основные части наплавочной головки – механизм подачи проволоки с редуктором для изменения скорости её подачи, бункер для флюса с флюсопроводом и специальный мундштук для проволоки. Наплавочную головку укрепляют изолированно на суппорте токарного станка, снабжённого редуктором для изменения часты вращения детали под от 0,29 до 4 об/мин. Электродная проволока сматывается с кассеты, а флюс под действием собственного веса подаётся на бункера. Для питания дуги используется источник постоянного тока. Переменным током пользуются сравнительно редко. При колебаниях напряжения переменного тока в сети дуга менее устойчива, вследствие чего получается неровный наплавленный слой. ”Минус” источника тока соединяется с массой станка, “плюс” с электродной проволокой. Для автоматического управления процессом (подача проволоки, включения станка и источника тока) предназначен аппаратный ящик.

Ток поступает к детали через медно – графитные щётки и кольцевую медную шину, закреплённую на патроне станка. Метал наплавляют при продольном перемещении суппорта с наплавочной головкой.

Станки

Для наплавки цилиндрических деталей используются токарные станки. Тип токарного станка определяется исходя из размеров восстанавливаемой детали, (высота центров станка, расстояние от патрона задней бабки). Для наплавки можно использовать изношенные останки, т. е. высокой точности от них не требуется. Число оборотов станка должно регулироваться в диапазоне 0,5 до 5 об/мин. Большинство токарных станков имеет минимальное число оборотов 10-20 об/мин. Поэтому для снижения числа оборотов установка оборудуется редуктором.

Наплавочные автоматы

Для наплавки деталей применяются наплавочные автоматы А-384Н, А-384 и др. Основные части наплавочной головки – механизм подачи проволоки с редуктором для изменения скорости её подачи, бункер для флюса с флюсопроводом и специальный мундштук для проволоки.

Дуговая наплавка под флюсом

По-сравнению с наплавкой в защитных газах, наплавка под флюсом характеризуется высокой производительностью, минимальным (0,5-3%) коэффициентом потерь электродного металла. Кроме того, закрытая дуга позволяет избежать применения каких-либо дополнительных средств защиты от ее теплового и светового излучения, брызг и возможных выплесков металла из сварочной ванны.

В общем случае при наплавке под флюсом (Рисунок 4) дуга горит между электродом и изделием, к которому подведен ток, и образует на поверхности изделия ванночку расплавленного металла. Наплавляемый участок покрывает толстый слой сыпучего флюса. Дуга частично расплавляет флюс и горит внутри полости с эластичной оболочкой из расплавленного флюса – шлака. Расплавленный шлак надежно изолирует жидкий и перегретый металл от газов воздуха, предупреждает разбрызгивание и способствует сохранению тепла дуги. После затвердевания металла образуется наплавленный валик, покрытый шлаковой коркой и нерасплавившимся флюсом.

Для электродуговой наплавки (сварки) алюминия и его сплавов плавящимся электродом по слою флюса (полуоткрытой дугой) применяют плавленые флюсы АН-А1, 48-АФ-1, МАТИ-1а и под слоем флюса – керамические флюсы ЖА-64 и ЖА-64А.

Рисунок 4. Схема наплавки под флюсом

Для наплавки (сварки) меди применяют плавленые флюсы марок АН-348А, ОСЦ-20С, АН-26С и бескислородные фторидные флюсы, например, марки АН-М1.

Для наплавки (сварки) титана и титановых сплавов применяют бескислородные флюсы АНТ-1, АНТ-3, АНТ-7 системы СаF2 – BCl2 – NaF.

Наплавка (сварка) никеля может осуществляться под флюсами двух типов: керамическим (марки ЖН-1) и плавлеными фторидными бескислородными и высокоосновными (марки АН-Ф5, АН-8, 48-ОФ-6, АН-29 и др.).

Данный вид наплавки используется очень часто, он считается самым популярным вариантом выполнения механизированной наплавки.

При обработке металлов дуговой наплавкой под флюсом наплавленная поверхность имеет очень качественный внешний вид:

Кроме того, данный способ наплавки металлов характеризуется следующими положительными факторами:

  • нет открытого излучения электродуги;
  • электродный материал теряется несущественно;
  • процесс признается высокопроизводительным за счет своей несложности и непрерывности выполнения операций.

Наплавленный материал при его обработке под флюсом допускается легировать по четырем разным методикам:

  1. Использование стандартных плавленых смесей с порошковой лентой либо проволокой. Указанная проволока или лента (их конкретная марка подбирается от необходимой твердости и непосредственно вида наплавленного металла) при нагреве в дуге формируют жидкий состав с высокой степенью однородности.
  2. Использование флюсов в сочетании с легированной лентой (проволокой). Обычно при таком способе применяют флюсы марки АН (26 или 20), спеченные и обычные сварочные ленты, специальные и легированные проволоки.
  3. Использование керамических смесей марки АНК в комбинации с лентой либо проволокой с малым содержанием углерода. Флюсы АНК гарантируют беспроблемное удаление корки шлака, качественное образование защитного слоя и его отличную стойкость против появления трещин и пор.
  4. Использование обычных флюсов и низкоуглеродистых лент (проволок) с обязательным размещением элементов с легирующими возможностями на верхнюю часть деталей, которые планируется наплавлять.

Рассматриваемая технология при нанесении нескольких защитных слоев предусматривает необходимость удаления корки шлака перед наплавлением следующего слоя во избежание формирования непроваров и включений шлаков. Изделия из легированных сталей обычно обрабатывают под флюсами с малым содержанием кремния (АН-26 или 22), из низколегированных и углеродистых – под АН-348-А либо ОСЦ-45, из хромоникелевых с высоким уровнем легирования – под АНФ (1 и 5), которые содержат много фтора.

Плазменная наплавка и напыление. Сущность этого метода заключается в том, что нагрев присадочного металла и основного осуществляется сжатой дугой или газовой плазмой, выделенной или совпадающей со столбом дуги. Механизм образования наплавленного слоя такой же, как и при других способах дуговой наплавки. Из наплавочных материалов при плазменной наплавке используют проволоку, прутки и порошки. Схема плазменной наплавки с вдуванием порошка в дугу показана на рис. 5. Между вольфрамовым электродом 1 и внутренним соплом 2 возбуждают дугу. Плазмообразующий газ, проходя через нее, создает плазменную струю 3 косвенного действия, которая обеспечивает расплавление присадочного порошка.

Рис. 5. Схема плазменной наплавки с вдуванием порошка в дугу

Другая дуга, 4 прямого действия, горящая между электродом 1 и основным металлом 5, совпадает с плазменной струей прямого действия. Последняя создает необходимый нагрев поверхности, обеспечивая сплавление порошка и основного металла. Изменяя значение силы тока сжатой дуги прямого действия, можно достичь минимальной величины проплавления основного металла. Толщину наплавленного слоя можно изменять в пределах 0,3 – 10 мм с разбавлением основным металлом от 3 до 30%. При плазменной наплавке с присадочной проволокой косвенная дуга горит между вольфрамовым электродом и соплом, а дуга прямого действия – между вольфрамовым электродом и присадочной проволокой. От этих дуг получает теплоту и основной металл. Изменяя силу тока, регулируют долю основного металла и производительность наплавки. Наплавляемое изделие в этом случае в сварочную цепь не включено.

Из защитных газов при плазменной наплавке применяют аргон, азот, углекислый газ, смеси аргона с гелием или азотом и др. Выбор защитного газа связан со степенью его воздействия на наплавляемый и основной металлы. В качестве плазмообразующего могут применяться аргон, гелий, углекислый газ, воздух и др. Для обеспечения стабильного протекания процесса наплавки необходимо применять неплавящиеся электроды из такого материала, который способен без разрушения выдерживать нагревание до высоких температур. Таким требованиям лучше всего отвечают электроды из чистого вольфрама или с присадками диоксида тория, оксидов лантана и иттрия. Преимущества этого вида наплавки – малая глубина проплавления основного металла, возможность наплавки тонких слоев, высокое качество и гладкая поверхность наплавленного металла.

Помимо наплавки плазменный нагрев может использоваться также для напыления поверхностных слоев. Процесс напыления отличается от наплавки рядом особенностей. Напыление – это процесс нанесения металлических слоев из частиц напыляемого материала, нагретых до температуры плавления или близких к оплавлению, на неоплавленную поверхность обрабатываемой детали. При напылении присадочный материал используется в виде проволоки или порошков, подаваемых в сжатую дугу, где он нагревается струей газового потока и с большой скоростью подается на поверхность изделия. Толщина напыленного слоя может изменяться от сотых до десятых долей миллиметра. Напыление более толстых слоев обычно не производится в связи с тем, что толстые слои склонны к отслоению от поверхности детали (откалывание). Напыление можно производить как металлами и сплавами, так и различного вида соединениями – оксидами, карбидами, нитридами и т. п.

Читайте также:  Дуговая сварка

Технологически в отличие от наплавки напыление выполняют по способу косвенного нагрева выделенной дуговой плазмой. Если при наплавке расстояние от сопла горелки до изделия составляет 6 – 25 мм, то при напылении – 50 – 120 мм и более. Напыленные слои обладают меньшей плотностью и большей пористостью по сравнению с наплавленными и более склонны к откалыванию от поверхности детали при нарушении технологии. Однако в них практически отсутствует разбавление основным металлом.

Электрошлаковая наплавка. При электрошлаковой наплавке для оплавления основного и присадочного металла служит шлаковая ванна, разогреваемая проходящим через нее электрическим током. Этот способ наплавки, как правило, сочетается с принудительным формированием наплавляемого слоя. Сущность процесса электрошлаковой наплавки (рис. 6) состоит в том, что в пространстве, образованном поверхностью наплавляемого изделия 1 и формирующим кристаллизатором 4, охлаждаемым водой, создается ванна расплавленного шлака 3, в которую подается электродная проволока 5.

Рис. 6. Схема электрошлаковой наплавки на вертикальную поверхность

Ток, проходя между электродом и изделием, нагревает шлаковую ванну до температуры выше 2000°С, в результате чего электродный и основной металлы оплавляются, образуя металлическую ванну, при затвердевании которой формируется наплавленный слой 2.

Для осуществления процесса электрошлаковой наплавки различных поверхностей необходима достаточно глубокая шлаковая ванна, получение которой проще всего при вертикальном или наклонном расположении деталей. По сравнению с дуговой наплавкой это менее универсальный способ, но он весьма эффективен в тех случаях, когда на деталь необходимо наплавить слой металла большой толщины (более 14 – 16 мм). Благодаря применению большой силы тока и электродов большого сечения можно достичь высокой производительности – до 150 кг наплавленного металла в час.

Вибродуговая наплавка. Этот способ обычно используется для наплавки деталей типа тел вращения диаметром от 8 – 10 мм и более. Сущность этого метода наплавки заключается в том, что основной и электродный металл нагревается до расплавления теплотой, которая выделяется в результате возникновения периодически повторяющихся электрических разрядов, т.е. прерывисто горящей электрической дуги; Наплавленный слой образуется в процессе кристаллизации расплавленного основного и электродного металла (рис. 7). Малая длительность и прерывистость горения электрической дуги обусловлены вибрациями электродной проволоки, которые создаются с помощью электромагнитных или механических вибраторов. В процессе вибраций наблюдаются короткие замыкания вследствие прикасания электродной проволоки к наплавляемому изделию (основному металлу), а во время отрыва проволоки возникает большой силы ток и загорается электрическая дуга. При среднем значении тока Iд = 150 А экстраток достигает 1000 А.

Рис.7. Схема вибродуговой наплавки: 1 – вибрирующий наконечник, 2 – электродная проволока, 3 – деталь, 4 – наплавленный слой.

В качестве присадочного металла применяют наплавочные проволоки (одну или несколько), которые могут иметь возвратно-поступательные перемещения поперек сварочной ванны, а также электродные ленты, пластины или стержни большого сечения, иногда и трубы, которые используют для наплавки цилиндрических поверхностей. При наплавке обычно применяют флюсы АН-8, АН-22 и др.

Длительность горения дуги составляет 0,002 – 0,003 с.

Наплавочная установка состоит из вибродуговой головки, аппаратуры управления, вращателя, источника тока. Во время наплавки выполняются следующие движения: вращение наплавляемой детали, поступательное движение вибродуговой головки вдоль продольной оси наплавляемой детали, подача проволоки в зону дуги и вибрация проволоки. Питание осуществляется от выпрямителей, сварочных генераторов, а также от низковольтных трансформаторов с вторичным напряжением 12 – 16 В и более. Более высокие показатели достигаются при наплавке на постоянном токе обратной полярности. Обычно в сварочную цепь включают индуктивность, значение которой выбирают в зависимости от частоты вибрации электродной проволоки, напряжения, рода тока и других факторов. Для наплавки пригодны сварочные проволоки диаметром 0,8 – 2,0 мм. С целью защиты расплавленного металла от взаимодействия с окружающей средой наплавка ведется в струях жидкостей или защитных газов, а также под слоем флюса. Применяются водные растворы кальцинированной соды; смеси кальцинированной соды, мыла и глицерина; эмульсии глицерина.

Прерывистость процесса позволяет получать зону термического влияния малой ширины, поэтому наплавленные детали имеют весьма малые деформации, что особенно важно при наплавке сложных изделий, изготовленных с высокой точностью.

Если наплавка выполняется в струе жидкости, происходит ускоренное охлаждение наплавленного металла, поэтому он имеет повышенную твердость и износостойкость. Вибродуговая наплавка эффективна, если необходимо наплавлять слои металла небольшой толщины.

Недостатками вибродуговой наплавки являются сравнительно низкий коэффициент наплавки и невысокая производительность наплавки

Дуговая наплавка под флюсом

Читайте также:

  1. Вибродуговая наплавка
  2. Вопрос 3. Эластичность спроса по цене. Факторы ценовой эластичности. Измерение ценовой эластичности: дуговая и точечная эластичность. Перекрестная эластичность спроса по цене.
  3. Газопорошковая наплавка
  4. Дуговая наплавка покрытыми электродами.
  5. Индукционная наплавка порошковой шихтой
  6. Наплавка в среде углекислого газа
  7. Наплавка твердыми сплавами
  8. Электрошлаковая наплавка

При дуговой наплавке под флюсом сварочная дуга между го­лым электродом и изделием горит под слоем сухого гранулированного флюса толщиной 20. 40 мм с размером зерен 0,5. 3 мм в поперечнике

Одновременно плавятся сварочная проволока, основной металл и флюс. При плавлении часть леги­рующих компонентов выгорает. Жидкий металл в сварочной ванне постоянно движется и перемешивается. Металл свароч­ного шва, полученного под флюсом, состоит из расплавленного присадочного металла (1/3) и переплавленного основного метал­ла (2/3). Отношение массы расплавленного флюса к массе рас­плавленного присадочного металла составляет

1:1. Использова­ние флюса обеспечивает уменьшение разбрызгивания и угара металла, позволяет применять ток большей плотности, чем при ручной наплавке покрытыми электродами; замедляет процесс затвердевания металла; создает благоприятные условия для вы­хода газов из шва; уменьшает потери тепла сварочной дуги на излучение и нагрев потоков окружающего воздуха.

Электродным материалом для наплавки под слоем флюса служат проволоки сплошного сечения (углеродис­тая, легированная и высоколегированная), порошковые прово­локи (легированная и высоколегированная). Для повышения производительности процесса используют также ленточные электроды (стальная, спеченная, металлокерамическая и порош­ковая лента).

Основными технологическими параметрами наплавки явля­ются состав флюса и электродного материала; напряжение дуги; сила и полярность тока; скорость наплавки и подачи электрод­ного материала; шаг наплавки; смещение электрода с зенита; диаметр и вылет электрода.

Марку флюса и электродного материала выбирают с учетом тре­буемых физико-механических свойств наплавленного покрытия.

С повышением напряжения дуги увеличивается ширина наплавленного вали­ка, повышается количество расплавленного флюса, т. е. его рас­ход. При низком напряжении дуги получается высокий узкий валик.

Сварочный ток определяет глубину проплавления основного металла и производительность процесса. С увеличением тока возрастают объем жидкой ванны, глубина и площадь проплавления металла, что приводит к увеличению высоты наплавляемого валика. Од­нако при дальнейшем повышении тока формирование наплав­ляемого валика ухудшается, отсутствует плавный переход от поверхности наплавленного металла к основному. Появляется опасность деформации детали, уменьшается концентрация леги­рующих элементов в наплавленном слое, так как доля основного металла в нем повышается. Чем меньше диаметр детали, тем меньше должны быть ток и диаметр электродной проволоки.

Ток выбирают в зависимости от диаметра электродной прово­локи и регулируют скоростью ее подачи. Для уменьшения про­плавления основного металла применяют ток обратной полярно­сти.

Замена одноэлектродной наплавки многоэлектродной позволяет повысить производительность процесса в 1,5—2 раза, более рационально использовать легирующие элементы проволоки и флюса за счет длительного взаимодействия расплавленного ме­талла и флюса.

Преимуществами наплавки под флюсом являются:

– производительность процесса, возросшая в 6—8 раз по сравнению с наплавкой покрытыми электродами за счет механизации, уменьшения потери тепла, увеличения силы тока;

гарантия наплавки с заданным химическим составом и физико-механическими свойствами наплавленного слоя (качество наплавки не зависит от квалификации сварщика);

– возможность получения наплавленного слоя значительной толщины (1,5. 8 мм);

– уменьшение расхода электродного материала благодаря устранению потерь на разбрызгивание, угар, огарки (не более 3%);

облегчение условий труда, так как процесс механизирован и отсутствует излучающее действие дуги.

К недостаткам этой технологии относятся:

большой прогрев детали и значительная зона термического влияния с нарушением термообработки примыкающих к наплавке участков детали;

проблема удержания ванны расплавленного металла и флюса при наплавке деталей цилиндрической формы (наплавку деталей диаметром менее 50 мм не проводят);

отсутствие возможности получения покрытия толщиной менее 1,5 мм;

необходимость удаления шлаковой корки, которая может способствовать прекращению горения дуги при наплавке смежных валиков.

Благодаря преимуществам механизированная наплавка под флюсом является самой распространенной.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)

Ссылка на основную публикацию