Гидравлический привод сцепления

Какие бывают виды приводов сцепления и их принцип работы

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Схема механического привода сцепления:
1 — контргайка; 2 — регулировочная гайка; 3 — нижний наконечник троса; 4 — защитный чехол троса; 5 — кронштейн крепления троса; 6 — нижний наконечник оболочки троса; 7 — оболочка троса; 8 — поводок троса; 9 — уплотнитель; 10 — верхний наконечник оболочки троса; 11 — верхний наконечник троса; 12 — кронштейн педали сцепления; 13 — пружина педали сцепления; 14 — педаль сцепления; 15 — упорная пластина.

В его конструкции основным элементом является трос, который соединяет между собой «вилку» выключения и педаль сцепления. При нажатии водителем на педаль сцепления через трос, который в свою очередь заключен в специальную оболочку, передается соответствующее усилие на рычажную передачу. В свою очередь рычажная передача обеспечивает выключения сцепления путем перемещения вилки сцепления.

Привод сцепления механический также оснащен механизмом, отвечающим за регулировку свободного хода педали сцепления. Данный механизм включает в себя на конце троса регулировочную гайку. Необходимость данного механизма в первую очередь обусловлена постепенным, вследствие износа, изменением положения педали сцепления.

Гидравлический привод сцепления

Данный привод по своей конструкции напоминает гидравлический привод тормозной системы автомобиля. В нем также в качестве «рабочей» жидкости используется тормозная жидкость, а сам привод состоит из:

  • педали сцепления;
  • главного и рабочего цилиндров;
  • бачка с «рабочей» жидкостью;
  • соединительных трубопроводов.

Схема гидравлического привода сцепления:
1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 — подшипник выключения сцепления с муфтой; 5 — бачок гидропривода сцепления; 6 — шланг; 7 — главный цилиндр гидропривода выключения сцепления; 8 — сервопружина педали сцепления; 9 — возвратная пружина педали сцепления; 10 — ограничительный винт хода педали сцепления; 11 — педаль сцепления; 12 — трубопровод гидропривода выключения сцепления; 13 — шаровая опора вилки; 14 — вилка выключения сцепления; 15 — оттяжная пружина вилки выключения сцепления; 16 — шланг; 17 — рабочий цилиндр гидропривода выключения сцепления; 18 — штуцер прокачки сцепления.

Главный и рабочий цилиндры выполнены в качестве поршня с толкателем, которые в свою очередь размещены в корпусе. При нажатии водителем на педаль сцепления поршень главного цилиндра начинает двигаться с помощью толкателя вследствие чего «рабочая» жидкость отсекается от бачка. Далее «рабочая» жидкость поступает в рабочий цилиндр по соединенному трубопроводу.

Именно под воздействием «рабочей» жидкости и происходит движение толкателя с поршнем. Толкатель в свою очередь оказывает воздействие на «вилку» сцепления и тем самым обеспечивает выключения сцепления.

Для того чтобы удалить из привода воздух, на рабочем и главном цилиндрах установлены специальные штуцеры.

Работа сцепления с гидравлическим приводом — видео:

Также на некоторых автомобилях применяется вакуумный либо пневматический усилитель привода. Его установка облегчает управление автомобилем.

Привод сцепления

Прочитав статью «Сцепление автомобиля», вы познакомились с назначением, устройством и принципом действия сцепления. В данной статье мы более подробно рассмотрим отдельный узел сцепления автомобиля – привод сцепления. Как известно, сцепление предназначено для эластичного отсоединения и последующего присоединения силового агрегата к трансмиссии. Однако при неисправности привода, сцепление полностью утрачивает свою функциональность. Из этого можно понять, что привод предназначен для обеспечения функционирования сцепления, а именно – для дистанционного воздействия на нажимной диск (корзину сцепления) посредством нажатия педали в салоне автомобиля.

Разновидности привода сцепления

На большинстве легковых автомобилей с механической КПП устанавливается два вида привода сцепления;

  • механический (тросовый);
  • гидравлический.

Механический привод устанавливается преимущественно на легковых автомобилях, оснащенных силовыми агрегатами малой мощности. Данный вид привода отличается предельно простым устройством и дешев при производстве. Кроме того, механический привод весьма прост в обслуживании и ремонте, так как содержит минимальное количество конструктивных элементов.

Устройство механического привода

Как уже было сказано, механический привод имеет предельно простое устройство и состоит из следующих конструктивных элементов:

  • педаль привода сцепления;
  • трос;
  • устройство регулирования;
  • рычажный привод;
  • выжимной подшипник.

Основным элементом механического привода является гибкий трос , заключенный в оболочку. Педаль привода расположена в салоне автомобиля и посредством гибкого троса связана с рычажным устройством (вилка сцепления). В соединении троса и вилки сцепления имеется регулировочное устройство, предназначенное для выставления свободного хода педали. Работа механического привода предельно проста: водитель воздействуя на педаль, приводит в движение рычажное устройство, которое в свою очередь перемещает по направляющей выжимной подшипник, тем самым выключая сцепление.

Устройство гидравлического привода

Гидравлический привод имеет более сложное устройство в сравнении с механическим. В его устройстве также присутствуют педаль и вилка сцепление, однако гибкий трос заменен следующими элементами:

  • главный цилиндр;
  • бачок для жидкости;
  • рабочий цилиндр;
  • гидравлическая магистраль.

Несмотря на большее количество конструктивных элементов и более сложное устройство, гидравлический привод более совершенен, нежели механический. Главной особенностью гидравлического привода является отсутствие троса, который является механическим элементом, подверженным износу и поломкам.

Главный цилиндр сцепления соединен при помощи штока с педальным узлом. Соединительный шток имеет регулируемую конструкцию, при помощи которой обеспечивается регулировка свободного хода педали. Рабочий цилиндр наиболее часто располагается непосредственно на корпусе картера сцепления и также при помощи штока связан с рычажным механизмом.

Бачок для жидкости может располагаться непосредственно на главном цилиндре сцепления или в любом другом более удобном месте. При раздельном расположении, бачок соединяется с главным цилиндром при помощи гибкого резинового патрубка или жесткой металлической магистрали. Также стоит отметить, что на некоторых автомобилях гидропривод сцепления и гидравлическая тормозная система имеют общий бачок для жидкости.

Главный цилиндр сцепления соединен с рабочим посредством жесткой металлической магистрали , наполненной рабочей жидкостью. Принцип работы гидравлического привода аналогичен действию гидравлической тормозной системы и в его основе лежит свойство несжимаемой рабочей жидкости. Усилие с педали сцепления передается на вилку выключения через жидкость, в качестве которой выступает тормозная жидкость.

Конструктивно, главный цилиндр сцепления имеет аналогичное устройство с главным тормозным цилиндром. Основными конструктивными элементами главного цилиндра являются:

  • корпус;
  • шток (толкатель);
  • резервуар (бачок) для жидкости;
  • поршень;
  • уплотнительные манжеты.

Рабочий цилиндр также имеет аналогичное устройство. В конструкции рабочего цилиндра имеется клапан для удаления воздуха из системы.

Дополнительное оборудование в приводе сцепления

Гидравлический и механический приводы обеспечивают достаточный комфорт для водителя, учитывая небольшую жесткость диафрагменной пружины нажимного диска легкового автомобиля. Однако на грузовых автомобилях сцепление имеет большие размеры и соответственно требуется намного большее усилие на педали, для приведения в действие корзины. Для облегчения усилия на педали в таких случаях устанавливается пневматический (вакуумный) усилитель , принцип действия которого аналогичен вакуумному усилителю тормозной системы.

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

Привод сцепления

Управление сцеплением в автомобилях с механической коробкой передач производится с помощью педали, но педаль — это лишь один из элементов привода сцепления, а все самое главное скрыто от глаз водителя. О том, что такое привод сцепления, каких он бывает видов, как устроен и как работает, читайте в этой статье.

Назначение и классификация приводов сцепления

Привод сцепления — специальная система, предназначенная для управления сцеплением в автомобилях с механической коробкой передач. С помощью привода усилие от педали передается на вилку выключения сцепления, а через нее — на пружину, что позволяет простым положением педали управлять положением дисков сцепления.

Передать усилие от педали на вилку можно разными способами, и именно на этом строится классификация приводов сцепления. Сегодня выделяют два основных типа привода:

Также существуют комбинированные приводы (электрогидравлический, электромеханический, то есть — с использованием электромоторов), электромагнитный и другие типы приводов, но они не нашли широкого применения в современных автомобилях. Поэтому расскажем только об основных типах привода сцепления.

Читайте также:  Блокировка включения стартера

Схема механического привода выключения сцепления и механизма сцепления:

  1. коленчатый вал
  2. маховик
  3. ведомый диск
  4. нажимной диск
  5. кожух сцепления
  6. нажимные пружины
  7. отжимные рычаги
  8. подшипник выключения сцепления
  9. вилка выключения сцепления
  10. металлический трос
  11. рычаг привода
  12. педаль сцепления
  13. шестерня первичного вала
  14. картер коробки передач
  15. первичный вал коробки передач

Устройство и принцип работы механического привода сцепления

Главная особенность механического привода сцепления в том, что в нем усилие от педали к вилке передается с помощью металлического троса. В состав механического привода входят следующие основные компоненты:

– Педаль сцепления;
– Рычажный привод;
– Трос в гибкой оболочке;
– Вилка выключения сцепления;
– Устройство регулирования свободного хода педали.

Принцип действия механического привода тоже прост: при нажатии на педаль с помощью рычажной передачи трос натягивается и тянет за собой вилку выключения сцепления, которая через муфту и подшипник сжимает пружину — сцепление выключается. Возврат педали производится пружиной. Регулировка свободного хода педали, а также компенсация износа фрикционных накладок на дисках производится с помощью регулировочной гайки, расположенной на конце троса.

Механический привод широко применяется на мотоциклах и легковых автомобилях (где сцепление имеет небольшую массу и требует небольших усилий для управления), он очень прост в производстве и регулировании, надежен и имеет очень низкую стоимость. Однако недостаток механического привода в его трущихся деталях — стальной тросик со временем изнашивается, он может заклинить или оборваться, свободный ход педали увеличивается и т.д. Но, несмотря на это, механический привод сцепления вряд ли в будущем уступит место более совершенным механизмам.

Устройство и принцип работы гидравлического привода сцепления

В гидравлическом приводе сцепления используется принцип передачи усилия с помощью несжимаемой жидкости. Устройство привода не отличается сложностью:

– Педаль сцепления;
– Главный цилиндр;
– Рабочий цилиндр;
– Магистраль гидропривода;
– Бачок с рабочей жидкостью.

Работа гидравлического привода, как и работа любого другого гидропривода, очень проста: при нажатии на педаль происходит сжатие жидкости в главном цилиндре, жидкость под давлением через магистраль поступает в рабочий цилиндр и толкает поршень, который, в свою очередь, с помощью штока толкает вилку выключения сцепления. Возврат вилки и поршней в первоначальное положение происходит за счет пружин при отпускании педали.

Часто в гидравлических приводах сцепления используется та же жидкость, что и в тормозной системе — обе системы питаются жидкостью из одного бачка.

Гидравлический привод имеет более сложную конструкцию и более высокую стоимость, однако он надежен, не подвержен износу и позволяет управлять сцеплением минимальными усилиями. В грузовых автомобилях гидравлический привод часто дополняется пневматическими или гидравлическими усилителями.

Устройство и принцип работы электронного привода сцепления

В последнее время многие компании предлагают совершенно новые конструкции приводов сцепления, которые находят применение в перспективных автомобилях, в том числе гибридных и электрических. Отдельного внимания заслуживает привод «Electronic Clutch System» от компании Bosch.

Electronic Clutch System (дословно — «Электронная система сцепления») — система, которая позволяет на автомобилях с механической коробкой передач реализовать некоторые функции автоматических коробок. В частности, при движении на первой передаче по городским пробкам управление автомобилем производится только педалями газа и тормоза (сцепление выключается при отпускании акселератора), педаль сцепления становится нужной только при переключении на вторую и более высокие передачи.

Электронный привод сцепления объединяет электронный блок педали сцепления, ряд датчиков (датчик положения рычага переключения скоростей, положения педали газа и другие), электронный блок управления и электрогидравлический привод вилки выключения сцепления. Также электронное сцепление связано с электронной системой управления двигателем, благодаря чему при переключении скоростей происходит автоматическое изменение оборотов двигателя.

Электронное сцепление дает возможность реализовать несколько полезных функций, которые снижают утомляемость водителя и уменьшают расход топлива. Как заявляет производитель, экономия топлива может достичь 10% и более, что при современных ценах на бензин даст ощутимый эффект.

На сегодняшний день система Electronic Clutch System находится на стадии тестирования, поэтому применяется ограниченно, но в будущем она может получить самое широкое распространение.

Устройство и принцип работы привода сцепления

Важной составляющей автомобиля, оснащенного механической коробкой передач, является сцепление. Оно состоит непосредственно из муфты (корзины) сцепления и привода. Остановимся более подробно на таком элементе, как привод сцепления, который играет важную роль в общем узле сцепления. Именно при его неисправности муфта теряет свою функциональность. Разберем устройство привода, его виды, а также преимущества и недостатки каждого.

Привод сцепления и его виды

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

В некоторых автомобилях для облегчения управления применяется пневматический или вакуумный усилитель привода.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой ценой. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод устанавливается в легковых и малотоннажных грузовых автомобилях.

Механический привод сцепления

К элементам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка выключения сцепления;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления, заключенный в оболочку, является основным элементом привода. Трос сцепления крепится к вилке, а также к педали, находящейся в салоне автомобиля. В момент выжимания педали водителем действие через трос передается на вилку и выжимной подшипник. В результате происходит разъединение маховика двигателя с трансмиссией и, соответственно, выключение сцепления.

В соединении троса и рычажного привода предусмотрен регулировочный механизм, обеспечивающий свободный ход педали сцепления.

Ход педали сцепления представляет собой свободное перемещение до момента срабатывания привода. Расстояние, пройденное педалью без особого усилия водителя при нажатии, и есть свободный ход.

Если переключение передач сопровождается шумом, а в начале движения наблюдаются небольшие рывки автомобиля, то необходима регулировка хода педали.

Зазор в сцеплении должен находиться в пределах 35-50 мм свободного хода педали. Нормативы этих показателей указаны в технической документации автомобиля. Регулировка хода педали осуществляется путем изменения длины тяги с помощью регулировочной гайки.

В грузовых автомобилях используется не тросовый, а рычажный механический привод.

К плюсам механического привода относятся:

  • простота устройства;
  • невысокая стоимость;
  • надежность в эксплуатации.

Главным минусом считается более низкий КПД по сравнению с гидроприводом.

Гидравлический привод сцепления

Гидропривод имеет более сложную конструкцию. К его элементам, помимо выжимного подшипника, вилки и педали, относится также гидравлическая магистраль, которая заменяет трос сцепления.

Схема гидравлического сцепления

По сути эта магистраль аналогична гидроприводу тормозной системы и состоит из следующих элементов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и трубопровод с тормозной жидкостью.

Устройство главного цилиндра сцепления напоминает устройство главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенных одном в корпусе. Также к его элементам относятся резервуар для жидкости и уплотнительные манжеты.

Рабочий цилиндр сцепления, имеющий схожую с главным цилиндром конструкцию, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидропривода такой же, как и у механического, только усилие передается с помощью находящейся в трубопроводе жидкости, а не через трос.

Во время нажатия водителем на педаль усилие через шток передается на главный цилиндр сцепления. Затем за счет несжимаемого свойства жидкости в действие приводятся рабочий цилиндр сцепления и рычаг привода выжимного подшипника.

В качестве плюсов гидропривода можно выделить следующие его особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительное расстояние с высоким КПД;
  • сопротивление перетеканию жидкости в элементах гидропривода способствует плавному включению сцепления.

Главный минус гидропривода – более сложный ремонт по сравнению с механическим. Течь рабочей жидкости и попадание в систему гидропривода воздуха — вот, пожалуй, наиболее распространенные поломки, которыми могут «похвастаться» главный и рабочий цилиндры сцепления.

Гидропривод применяется в легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Читайте также:  Бесконтактная система зажигания

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Привод выключения сцепления гидравлический

На автомобиле применяется гидравлический привод выключения сцепления с педалью подвесной конструкции (ось качания педали расположена выше ее площадки). Такой тип привода получает все большее распространение на современных легковых автомобилях. Его преимущества по сравнению с механическим приводом сводятся в основном к следующему:

  1. Сцепление включается более плавно, что уменьшает динамические нагрузки в трансмиссии, особенно при трогании автомобиля с места, и повышает комфортабельность езды.
  2. Значительно улучшается герметизация пассажирского помещения кузова от проникновения в него пыли, грязи и влаги, поскольку (при педали тормоза также «подвесной» конструкции) в наклонном полу кузова отсутствуют люки для прохода рычагов педалей сцепления и тормоза.
  3. Не забрасываются грязью и хорошо защищены от пыли главные цилиндры гидроприводов выключения сцепления и ножного тормоза, расположенные достаточно высоко па идете кузова, и элементы механической части приводов, что облегчает техническое обслуживание этих узлов и повышает их долговечность.
  4. Нет точек смазки в приводе сцепления, что упрощает обслуживание автомобиля.
  5. Появляются значительные компоновочные возможности, так как «подвесные» педали сцепления и тормоза вместе с их главными цилиндрами можно разместить на щите передка кузова в соответствии с особенностями компоновки автомобиля.

Устройство привода выключения сцепления

Штампованная педаль сцепления 21 установлена на сварном кронштейне 12, укрепленном на кузове болтами 11 и шпильками 8 с гайками 7. Педаль сцепления качается на оси 16, которая неподвижно закреплена в кронштейне 12. Педаль фиксируется от проворачивания лыской, входящей в фигурное отверстие в одной из щек кронштейна педали.

Аксиальное перемещение оси ограничено шплинтом 13 и уступом лыски. В ступицу педали вставлены две вращающиеся на оси полиамидные втулки 17, имеющие буртики на одном из торцов.

Втулки имеют высокую износостойкость и не требуют смазки в процессе эксплуатации. На площадку педали надета резиновая накладка 31. Педаль удерживается в исходном (крайнем заднем) положении усилием оттяжной пружины 15. При этом нерегулируемый толкатель 14, шарнирно соединенный с педалью пальцем 19, упирается в ограничительную шайбу 5, зафиксированную в осевом направлении стопорным кольцом.

В исходном положении педали поршень 12 главного цилиндра сцепления под действием пружины 8 упирается торцом в шайбу 14. Между толкателем 14 и поршнем 4 предусмотрен постоянный зазор а = 0,2 — 1,0 мм, который обеспечивается в указанных пределах выбранными размерами этих деталей и ограничительной шайбы 5.

Указанный зазор обеспечивает поршню главного цилиндра возможность занять исходное положение (при включенном сцеплении), гарантирующее сообщение полости а цилиндра с наполнительным бачком 3 через компенсационное отверстие б.

В приводах сцепления и управления ножными тормозами оси педалей, полиамидные втулки, толкатели, накладки педалей и крепежные детали взаимозаменяемы. Главный цилиндр сцепления предназначен для создания давления в системе гидравлического привода сцепления. Цилиндр имеет чугунный корпус 9 внутреннего диаметра 22 мм с фигурным фланцем; во фланец ввернуты две шпильки 18, с помощью которых цилиндр и кронштейн 12 педали крепятся к щиту передней части кузова. Между фланцем корпуса цилиндра и щитом передней части кузова при сборке устанавливают до четырех (по потребности) регулировочных прокладок 6, изготовленных из листовой стали толщиной 0,5 мм каждая. Эти прокладки помогают установить исходное положение педали сцепления, которое должно обеспечивать полный ее ход L до упора в резиновый коврик пола, равный 150—155 мм.

Рис. Привод выключения сцепления:
1 — кронштейн крепления соединительной трубки; 2 — соединительная трубка; 3 — главный цилиндр сцепления в сборе; 4 — поршень главного цилиндра сцепления; 5 — ограничительная шайба; 6 — регулировочная прокладка; 7 и 28 — гайки; 8 — шпилька крепления главного цилиндра; 9 — питательный бачок главного цилиндра сцепления; 10 — гайкодержатель; 11 — болт крепления кронштейна педали сцеплении; 12 — кронштейн педали сцепления: 13 — шплинт оси педали сцепления; 14 — толкатель поршня главного цилиндра сцепления; 15 — оттяжная пружина педали сцепления; 16 — ось педалей сцепления и тормоза; 17 — втулка оси педалей сцепления и тормоза; 18 и 33 — шайбы; 19 и 23 — пальцы; 20 и 32 — шплинты; 21 — педаль сцеплении; 22 — вилка выключения сцепления; 24 — наконечник толкателя; 26 — оттяжная пружина вилки выключения сцепления; 26 — контргайка; 27 — толкатель вилки; 29 — рабочий цилиндр привода включения сцепления; 30 — шпилька крепления рабочего цилиндра; 31 — накладка педали; 34 — защитный колпак; 35 — стопорное кольцо; 36 — поршень рабочего цилиндра; 37 — уплотнительная манжета; 38 — распорный грибок; 39 — пружина; 40 — клапан выпуска воздуха; 41 — защитный колпачок клапана; 42 — скоба крепления трубки; 43 — прокладка

На верху корпуса главного цилиндра расположен бачок 3, изготовленный из полупрозрачной пластмассы. В бачке содержится определенный запас тормозной жидкости, необходимый для нормальной работы гидравлического привода сцепления. Бачок закрыт пластмассовой резьбовой крышкой 1, в которой имеется отверстие для сообщения внутренней полости бачка с атмосферой, и укреплена отражательная пластина, предупреждающая выплескивание тормозной жидкости через указанное отверстие. На торец питательного бачка опирается фланец сетчатого фильтра 2, выполняющего одновременно функции успокоителя находящейся в бачке тормозной жидкости.

Питательный бачок 3 крепится к корпусу 9 главного цилиндра резьбовым штуцером 4, имеющим на торце шлиц под отвертку. Уплотнительная прокладка 5 после затяжки штуцера гарантирует герметичность соединения бачка с корпусом цилиндра. Через отверстие в штуцере 4 тормозная жидкость из бачка 3 самотеком поступает в корпус 9 главного цилиндра.

На находящийся внутри цилиндра поршень 12 надета резиновая уплотнительная манжета 13, препятствующая вытеканию жидкости из цилиндра. Поршень отлит из цинкового сплава. В головке поршня сделано шесть сквозных отверстий г, прикрытых тонким стальным кольцом-клапаном 11 и внутренней рабочей резиновой манжетой 10. На наружной поверхности манжеты имеются одна кольцевая и шесть продольных канавок. Пружина 8 прижимает манжету к поршню 12, а поршень — к упорной шайбе 14. Другим своим концом пружина упирается в резьбовой штуцер 7, закрывающий внутреннюю полость корпуса цилиндра.

Резиновый защитный колпак 16 предохраняет внутреннюю полость цилиндра от попадания пыли. Колпак плотно надет на проточку в корпусе цилиндра и стержень толкателя 17.

Рабочий цилиндр 29 сцепления укреплен с помощью двух шпилек 30 и гаек 28 с левой стороны картера сцепления. Внутренний диаметр рабочего цилиндра равен 22 мм.

Главный и рабочий цилиндры соединены между собой гнутой медной (6×1 мм) или двухслойной стальной трубкой 2 с омедненной внутренней и наружной поверхностями (6×0,7 мм). Спираль, расположенная в средней части трубки, компенсирует изменение расстояния между концами трубки, неизбежное при изменении положения силового агрегата, подвешенного на резиновых подушках, относительно кузова. Кроме закрепления по концам, трубка имеет две промежуточные точки крепления: на левом брызговике кузова с помощью кронштейна 1 и на картере двигателя с помощью скобы 42. Между крепежной деталью и трубкой проложены резиновые прокладки 43. Концы трубки имеют двойную коническую развальцовку, форма и размеры которой показаны на рисунке. До развальцовки концов на трубку надевают соединительные гайки, которыми она присоединяется затем к главному и рабочему цилиндрам.

Рис. Главный цилиндр привода сцепления:
1 — крышка бачка; 2 — сетчатый фильтр; 3 — бачок; 4 — штуцер бачка; 5 — прокладка штуцера бачка; 6 — прокладка штуцера главного цилиндра; 7 — штуцер главного цилиндра; 8 — пружина; 9 — корпус главного цилиндра; 10 — уплотнительная манжета главного цилиндра; 11 — клапан поршня; 12 — поршень; 13 — уплотнительная манжета поршня; 14 — упорная шайба; 15 — стопорное кольцо; 16 — защитный колпак; 17 — толкатель поршня; 18 — шпилька крепления главного цилиндра

Корпус 3 рабочего цилиндра представляет собой отливку из серого чугуна, имеющую с одной стороны открытую цилиндрическую полость, в которую вставлены литой алюминиевый поршень 7 с уплотнительной резиновой манжетой б, распорным грибком 5 и пружиной 4. Пружина постоянно прижимает сферическую поверхность грибка к уплотнительной кромке манжеты и через нее кромку к зеркалу цилиндра, что значительно улучшает уплотнение рабочего цилиндра, особенно при отсутствии давления в системе (сцепление включено).

Рис. Развальцовка концов соединительной трубки (размеры сечения трубок: стальной — 6 X 0,7; медной 6 X 1,0)

Рис. Рабочий цилиндр привода сцепления:
1 — защитный колпачок клапана; 2 — клапан выпуска воздуха; 3 — корпус цилиндра; 4 — пружина; 5 — распорный грибок; 6 — уплотнительная манжета; 7 — поршень; 6 — защитный чехол; 7 — стопорное кольцо

Ввернутый в корпус 3 цилиндра конический клапан 2 служит для удаления воздуха из системы гидропривода. Резиновый колпачок 1 надет на головку клапана и предохраняет внутренний канал клапана от засорения.

Читайте также:  Где можно взять кредит на любой автомобиль

В сферическое углубление поршня 36 вставлен толкатель 27, который регулируется по длине. Толкатель регулируют ввертыванием или вывертыванием его из вильчатого наконечника 24. Положение наконечника фиксирует контргайка 26. Пружина 25 вилки 22 выключения сцепления постоянно прижимает толкатель к сферической поверхности поршня и, при отсутствии давления в системе гидропривода сцепления, перемещает поршень в крайнее переднее положение. Поскольку поршень 36 в цилиндре 29 может перемещаться в направлении, соответствующем выключению сцепления (на рисунке вправо), только под действием давления рабочей жидкости, исключается образование разрежения, а следовательно, и проникновение в цилиндр через неплотности поршня воздуха. Поэтому нет необходимости поддерживать в соединительной трубке 2 и перед поршнем 36 избыточное давление, которое обычно обеспечивается установкой в главном цилиндре двойного клапана, как это делается в гидроприводе тормозов (см. ниже). Все детали главного цилиндра сцепления, за исключением корпуса 9 и штуцера 7 взаимозаменяемы с соответствующими деталями главного цилиндра тормоза. Так как в главном цилиндре сцепления отсутствует двойной клапан, корпус и штуцер этого цилиндра отличаются от корпуса и штуцера главного цилиндра тормоза. Чтобы было легче отличить главные цилиндры сцепления и тормоза, их крепежные фланцы повернуты относительно друг друга на 60°. Защитный резиновый чехол 8 предохраняет внутреннюю полость рабочего цилиндра от грязи.

Работа главного цилиндра сцепления

Главный цилиндр сцепления работает следующим образом. При нажатии на педаль 21 толкатель 14 перемещает поршень 4, сжимая пружину 8.

Как только манжета 10 перекроет перепускное отверстие б, внутри цилиндра в полости а создается давление, и жидкость через отверстие в штуцере 7 и по соединительной трубке 2 проходит в рабочий цилиндр 29, вызывая перемещение поршня 36, толкателя 27 и связанной с ним через наконечник 24 и палец 23 вилки 22 выключения сцепления. Сцепление выключается. При том растягивается оттяжная пружина 25 вилки и сжимаются нажимные пружины 14.

При отпускании педали сцепления последняя возвращается в исходное положение пружиной 75, а поршень 12 главного цилиндра под действием возвратной пружины 8 перемещается вслед за толкателем 17 до упора в шайбу 14. При этом давление в системе падает, и нажимной диск сцепления, переменяясь под действием нажимных пружин, вновь прижимает ведомый диск к маховику. Сцепление включается. Перемещение нажимного диска до его упора в ведомый диск вызывает перемещение связанной с ним через отжимные рычажки пяты и упертого в нее подпятника.

Далее подпятник и связанная с ним вилка выключения сцепления перемещаются под действием оттяжной пружины 25, которая постоянно прижимает шток толкателя 27 к поршню 36 и передвигает последний в крайнее переднее положение. При этом поршень вытесняет жидкость из внутренней полости рабочего цилиндра 29. Жидкость по трубке 2 возвращается в полость а главного цилиндра.

При резком отпускании педали сцепления жидкость, возвращающаяся из рабочего цилиндра в главный, не успевает заполнить пространство, освобождаемое поршнем 12, и в полости а создается разрежение.

Под действием этого разрежения жидкость из полости д (куда она поступает через отверстие в) перетекает в полость а через отверстия г в головке поршня, отодвигая клапан 11 и края манжеты 10. Канавки на поверхности манжеты 10 облегчают проход жидкости из полости д в полость а. В дальнейшем избыточная жидкость но мере поступления ее из трубопровода вытесняется из полости а через компенсационное отверстие б в бачок 3. Перетекание жидкости из соединительной трубки в главный цилиндр сцепления прекращается, как только поршень рабочего цилиндра под действием нажимных пружин и оттяжной пружины вилки выключения сцепления возвратится в крайнее переднее положение.

Устройство автомобилей

Ступенчатые трансмиссии

Привод сцепления

Привод сцепления служит для дистанционного управления сцеплением. Наибольшее распространение получили механический и гидравлический приводы.

Применение на автомобиле того или иного привода определяется типом сцепления, компоновкой автомобиля и рядом требований по обеспечению легкости и удобства управления.
Так, полный ход педали сцеплении не должен превышать 190 мм, а усилие на педали – 150 Н для легкового автомобиля и 250 Н для грузового автомобиля. Поэтому общее передаточное число в существующих конструкциях привода сцепления находится в пределах от 25 до 50.
В случае, если для обеспечения работы сцепления необходимо более высокое передаточное число, применяют усилители разных типов.

Механический привод сцепления

Механический привод сцепления прост по конструкции и надежен в эксплуатации, но обладает меньшим КПД по сравнению с гидравлическим приводом, поскольку в шарнирных сочленениях составляющих привод тяг, рычагов, в оболочках гибких валов теряется много энергии из-за сил трения. Поэтому такой тип привода применяется, как правило, если сцепление находится вблизи от органов управления (педали сцепления).

Существуют тросовый и рычажный механические приводы сцепления.

Тросовый привод (рис. 1, а) применяется на легковых переднеприводных автомобилях. Педаль 14 имеет верхнюю опору на кронштейне 16 и соединена с наконечником 10 троса. Трос заключен в оболочку 1, имеющую два наконечника. Верхний наконечник 12 оболочки выведен в салон автомобиля и упирается в упорную пластину 11, а нижний наконечник 2 оболочки закреплен в кронштейне 3 на картере сцепления.
Нижний наконечник 5 троса через поводок 8 соединен с рычагом 9 вилки выключения сцепления.
Регулировка хода педали осуществляется шайбами 6.

При нажатии на педаль сцепления трос перемещается внутри оболочки и перемещает рычаг вилки выключения сцепления, которая в дальнейшем воздействует на муфту выключения сцепления.

Рычажный привод грузового автомобиля (рис. 1, б) обеспечивает передачу усилия на сцепление при его выключении следующим образом.
При воздействии на педаль 14, закрепленную на валу 20, поворачивается рычаг 18, связанный с противоположным концом вала. Рычаг вала перемещает прикрепленную к нему на оси тягу 19, которая связана с рычагом 17 вилки выключения сцепления. Вместе с вилкой перемещается прижатая к ней с помощью пружины муфта выключения сцепления. После выбора зазора между подшипником выключения сцепления и рычагами начнется выключение сцепления.

Зазор в сцеплении должен быть равен 3…4 мм, что соответствует 35…50 мм свободного хода педали сцепления. Регулировка зазора осуществляется изменением длины тяги 19 (рис. 1) с помощью регулировочной гайки 22.
Отсутствие зазора или его недостаточная величина в приводе такой конструкции может привести к неполному включению сцепления и, как следствие, к пробуксовке сцепления. Увеличение зазора больше нормы приводит к неполному выключению сцепления, в результате чего возникает шум и треск зубчатых колес при переключении передач.

Гидравлический привод сцепления

Гидравлический привод выключения сцепления позволяет передавать усилие на большое расстояние с высоким КПД, снизить усилие на педали сцепления в результате наличия передаточного числа гидравлической части привода и способствует плавному включению сцепления из-за сопротивления перетеканию жидкости в элементах гидропривода. Он удобен для применения на легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Гидравлический привод (рис. 2) состоит из педали 6 сцепления с оттяжной пружиной, главного цилиндра 3, соединенного трубкой 2 с бачком 1, рабочего цилиндра, трубопроводов и шлангов для подачи рабочей жидкости от главного цилиндра к рабочему цилиндру и вилки выключения сцепления с пружиной 11.

При нажатии на педаль сцепления поршень 16 главного цилиндра перемещается влево и после перекрытия компенсационного отверстия 20 вытесняет жидкость через нагнетательный клапан 16 и трубопроводы в рабочий цилиндр. Поршень 14 рабочего цилиндра перемещает толкатель 9, который воздействует на вилку выключения сцепления 7.

При отпускании педали жидкость перетекает из рабочего цилиндра в главный цилиндр через обратный клапан 19 под действием усилия нажимных пружин сцепления и оттяжной пружины вилки 11. Обратный клапан устанавливается для создания небольшого избыточного давления в трубопроводах, которое исключает попадание воздуха в привод в результате возможного повышения давления окружающей среды при выключении сцепления и ускоряет время срабатывания привода при выключении сцепления.

При резком отпускании педали сцепления магистраль пополняется жидкостью через перепускное отверстие 21 и отверстие в поршне 18 главного цилиндра, прикрытое манжетой 19, что также не дает возможности снижения давления в приводе.
Избыток жидкости перетекает в бачок 1 через компенсационное отверстие 20, что позволяет возвратить детали привода в исходное положение.

Ссылка на основную публикацию