Виды форсунок

Форсунка двигателя внутреннего сгорания: виды форсунок и принцип работы

Автор: AutoLubitelПросмотров: 22479

Форсунка или инжектор – важный механизм топливной системы, предназначенный для своевременной и дозированной подачи и впрыска топливной смеси в камеру сгорания ДВС. Топливными форсунками оснащаются современные инжекторные системы в большинстве дизельных и бензиновых двигателей.


Фото: clauretano (flickr.com/photos/clauretano/)

Виды форсунок

По методу впрыска современные топливные форсунки делятся на три вида – электромагнитные, электрогидравлические и пьезоэлектрические.

Электромагнитные форсунки

Такой вид форсунок зачастую устанавливают в бензиновые двигатели. Подобные форсунки имеют простое и понятное устройство, состоящее, собственного говоря, из клапана электромагнитного типа, распылительной иглы и сопла.

Принцип работы электромагнитных форсунок также довольно прост. Подача напряжения на обмотку возбуждения клапана происходит строго в установленное время, в соответствии с заложенной программой.

Напряжение создает определенное магнитное поле, которое затягивает грузик с иглой из клапана, тем самым высвобождая сопло. Результатом всех действий является впрыск нужного количества топлива. По мере снижения напряжения, игла принимает исходное положение.

Электрогидравлические форсунки

Следующий вид форсунок применяется в дизелях, а также в двигателях с топливной системой Common Rail. Электрогидравлические форсунки в отличие от предыдущего вида имеют более сложное устройство, основными элементами которого являются дроссели (впускной и сливной), электромагнитный клапан и камера управления.

В основе работы такого типа форсунок лежит использование высокого давления топливной смеси как в момент впрыска, так и при его остановке. На начальном этапе электромагнитный клапан закрыт, а игла форсунки максимально прижата к своему седлу в камере управления. Прижимной силой является сила давления топлива, которая направлена на поршень, расположенный в камере управления.

Одновременно с этим с другой стороны топливо давит и на иглу, но поскольку площадь поршня заметно больше, чем площадь иглы, то в виду этой разницы сила давления на поршень больше, чем сила давления на иглу, которая плотно прижимается к седлу, перекрывая доступ топливу. В это время подача топлива не осуществляется.

Полученный сигнал от блока управления запускает клапан с одновременным открытием сливного дросселя. Происходит вытекание топлива из камеры управления в сливную магистраль. Дроссель впуска в это время препятствует тому, чтобы давление в камере сгорания и во впускной магистрали быстро выровнялось.

При этом, по мере снижения давления на поршень ослабевает его прижимное усилие, а поскольку давление на иглу не изменяется, то она поднимается, и в этот момент происходит впрыск топлива.

Пьезоэлектрические форсунки

Последний вид форсунок принято считать наиболее совершенным и перспективным среди всех описанных видов. Пьезофорсунки используются на дизельных ДВС с системой подачи топлива Common Rail. Конструктивно такие форсунки состоят из пьезоэлемента, толкателя, переключающего клапана, а также иглы.

Пьезофорсунки работают по принципу гидравлического механизма. Изначально игла размещается в седле при воздействии на нее высокого давления ТС. При поступлении электрического сигнала на пьезоэлемент, происходит его изменение в размере (его длина увеличивается), за счет чего пьезоэлемент буквально толкает поршень толкателя, который в свою очередь давит на поршень переключающего клапана.

Это приводит к открытию переключающего клапана, через него топливо устремляется в сливную магистраль, давление в верхней части иглы снижается и за счет не изменившегося давления снизу, игла поднимается. При подъеме иглы происходит впрыск топлива.

Основным преимуществом такого вида форсунок является их скорость срабатывания (до 4 раз быстрее, чем в клапанной системе), что позволяет обеспечить многократный впрыск за один рабочий цикл двигателя. При этом объем подаваемого топлива зависит от двух параметров – от продолжительности воздействия на пьезоэлемент, и от давления топлива в рампе.

Преимущества и недостатки форсунок

И в завершении хотелось бы сказать несколько слов о том, какие же преимущества и недостатки имеются у топливных форсунок, если сравнивать их с карбюраторами.

Преимущества топливных форсунок:

  • Экономия при расходе топлива благодаря точной системе дозирования;
  • Минимальный уровень токсичности двигателей, оснащенных топливными форсунками;
  • Возможность увеличения мощности силового механизма до 10%;
  • Простота и легкость при запуске в любую погоду;
  • Возможность улучшения динамических показателей любого автомобиля;
  • Отсутствие необходимости в частой замене и чистке
  • Возможные сбои в работе или серьезные поломки в результате использования топлива низкого качества, которое губительно сказывается на чувствительном механизме форсунок.
  • Высокая стоимость ремонта и замены форсунки в целом и отдельных ее элементов.

Виды, устройство и принцип работы топливных форсунок

Использование форсунок (инжекторов) позволило сделать работу автомобильного двигателя более экономичной и контролируемой в сравнении с карбюраторными системами. Их главная задача — обеспечение точной дозировки топлива, подаваемого в камеру сгорания, в определенный момент времени и образование оптимальной топливовоздушной смеси. Применяются форсунки и на бензиновых, и на дизельных моторах. Конструктивно они представляют собой сложные устройства высокой точности обработки.

Функции и виды форсунок

Топливная форсунка, или инжектор, представляет собой своеобразный клапан, работа которого контролируется блоком управления (ЭБУ) двигателя. Это позволяет подавать топливо, находящееся под высоким давлением, строго ограниченными порциями и в заданный момент времени. В зависимости от типа системы впрыска форсунка может устанавливаться в различных местах. Так, при моновпрыске она располагается перед дросселем во впускном трубопроводе. В системе с распределенным впрыском форсунки устанавливаются в ГБЦ перед клапанами. При этом для каждого цилиндра предусматривается свой отдельный инжектор. В двигателях с непосредственным впрыском форсунки находятся в верхней части цилиндра, подавая топливо сразу в камеру сгорания.

По способу управления (типу привода) инжекторы разделяют на следующие типы:

  • механические;
  • электромагнитные;
  • электрогидравлические;
  • пьезоэлектрические.

Устройство механической форсунки

Механические форсунки применяются на дизелях. Принцип их работы основан в воздействии усилия давления топлива на запорную пружину. Когда давление в системе выше сопротивления пружины, игла поднимается и происходит впрыск. После того как давление падает, игла возвращается в исходное положение. Стоит отметить, что давление таких форсунок дизельных двигателей очень низкое, а потому они редко применяются в современном автомобилестроении.

Электромагнитные и гидромеханические инжекторы могут иметь:

  • клапан форсунки со сферическим профилем;
  • штифтовой клапан;
  • дисковый клапан.

Как устроена электромагнитная форсунка двигателя

Такой тип инжекторов используется преимущественно в бензиновых системах, включая двигатели с непосредственным впрыском. По функциональному назначению электромагнитные форсунки разделяются на пусковые (например, в системе «K-Jetronic») и рабочие. Последние могут быть центральными (выполняют точечный впрыск) и индивидуальными (распределяют топливо по цилиндрам).

Устройство электромагнитной форсунки

Конструктивно электромагнитная форсунка самая простая. Ее основными элементами являются:

  • герметичный корпус;
  • разъем для подключения к электрической цепи;
  • запирающая пружина;
  • обмотка возбуждения клапана;
  • якорь электромагнита;
  • игла;
  • уплотнители;
  • сопло;
  • фильтр-сеточка форсунки;
  • распылитель.

В заданный момент времени ЭБУ двигателя подает напряжение на обмотку возбуждения, что обеспечивает формирование электромагнитного поля, воздействующего на якорь с иглой. В этот момент усилие сжатия пружины становится меньше магнитной силы, якорь втягивается, игла поднимается и освобождает сопло инжектора. Управляющий клапан форсунки двигателя открывается, и происходит впрыск топлива под высоким давлением. Когда блок управления прекращает подачу энергии на обмотку, пружина возвращает иглу в исходное положение.

Вопреки расхожему заблуждению, сама электромагнитная форсунка бензинового двигателя не создает давление. Давление в системе создается топливным насосом.

Электромагнитные инжекторы подбираются в зависимости от мощности двигателя. Прежде всего, необходимо знать, какое сопротивление у форсунок. В заводском исполнении они бывают низкоомные (2-6 Ом) и высокоомные 12-16 Ом. При низком сопротивлении может быть установлен дополнительный резистор в 6-8 Ом, который снизит потребление тока.

Принцип действия электрогидравлической форсунки

Электрогидравлический инжектор (насос-форсунка) — это форсунки топливные дизельные. Они подходят для типовых ТНВД и систем Common Rail. Состоят такие форсунки из следующих элементов:

  • сопло;
  • пружина;
  • камера управления;
  • дроссель слива;
  • якорь электромагнита;
  • магистраль слива топлива;
  • разъем для подключения к электрической цепи;
  • обмотка возбуждения;
  • штуцер подачи топлива;
  • дроссель на впуске;
  • поршень;
  • игла распылителя.

В момент начала цикла управляющий электромагнитный клапан форсунки полностью закрыт. Топливо в системе давит на поршень, находящийся в камере управления, а игла инжектора плотно прижата к седлу. ЭБУ двигателя подает напряжение на обмотку возбуждения электромагнитного клапана. Дроссель слива открывается, и топливо поступает в сливную магистраль.

Дроссель впуска, в свою очередь, не позволяет мгновенно выровнять давление на впуске и в камере управления. Таким образом, на некоторый промежуток времени усилие, воздействующее на поршень, уменьшается, а давление на иглу остается высоким. Эта разность давлений и обеспечивает подъем иглы и впрыск топлива.

Особенности работы пьезоэлектрической форсунки

Это исключительно дизельная форсунка, которая считается наиболее прогрессивной, поскольку обеспечивает более быстрое срабатывание, максимально точную дозировку и позволяет выполнять многократный впрыск на протяжении одного цикла. Она применяется в дизельных двигателях Common Rail. Пьезоэлектрические форсунки двигателя состоят из таких деталей:

  • игла;
  • уплотнители;
  • блок дросселей;
  • пружина запора иглы;
  • переключающий клапан форсунки;
  • пружина клапана;
  • поршень клапана;
  • пьезоэлемент;
  • сливная магистраль;
  • поршень толкателя;
  • фильтр;
  • разъем для подключения к цепи питания;
  • нагнетательная магистраль.

Принцип работы такого инжектора основан на изменении длины пьезоэлемента при подаче на него напряжения. В начальном положении игла под воздействием давления топлива посажена на седло. Когда ЭБУ двигателя посылает сигнал на пьезоэлемент, последний, изменяя длину, воздействует на поршень толкателя. Переключающий клапан форсунки открывается, и топливо подается на слив. Аналогично электрогидравлическим системам, создается разность низкого давления над иглой и высокого под ней, и она поднимается, выполняя впрыск дизтоплива. Количество последнего при этом регулируется длительностью подачи напряжения на пьезоэлемент пьезофорсунки и давлением в топливной рампе двигателя.

Рабочие параметры и неисправности инжекторов

Одной из основных характеристик форсунки является факел распыла. Для обеспечения корректной работы двигателя топливо должно распыляться под высоким давлением и на большую площадь. При этом размеры капель горючего должны быть как можно меньше. Это позволяет ускорить процесс сгорания и уменьшить расход топлива. Если же подача бензина или дизеля будет осуществляться струей, возникнут провалы в работе мотора, увеличится количество сажи в выхлопе. Происходит это, когда распылитель инжектора загрязняется.

Также важным параметром является время впрыска форсунок, или лаг открытия и закрытия. Он зависит от множества параметров напряжения, уровня давления и типа топлива. Измеряется лаг лабораторным методом, в ходе которого определяется количество пролитого топлива за единицу времени.

Несмотря на сложное устройство, топливные инжекторы имеют длительный срок эксплуатации. В среднем он составляет от 100 до 150 тысяч километров пробега. Основным требованием для обеспечения продолжительности работы форсунок является качество топлива и своевременный технический осмотр автомобиля.

Топливные форсунки: устройство и принцип действия

Форсунки — основной элемент дизельных двигателей и бензиновых двигателей с системой впрыска топлива (инжекторов). На сегодняшний день существует несколько принципиально разных типов форсунок, которые находят применение в двигателях различных конструкций. Обо всем этом — читайте в представленной статье.

Назначение и виды форсунок

В дизельных и инжекторных бензиновых двигателях применяются системы впрыска топлива, в которых главную роль играют форсунки — специальные устройства, распыляющие топливо в камере сгорания. В основе работы бензиновых и дизельных форсунок лежит одинаковый принцип: топливо распыляется, проходя под высоким давлением через сопло особой формы (они создают топливный факел, в котором жидкое топливо разбивается на микроскопические капли и смешивается с воздухом).

Однако форсунки инжекторных бензиновых моторах работают под относительно небольшим давлением в единицы атмосфер, в то время как форсунки дизельных двигателей работают под давлением в сотни, а иногда и в тысячи атмосфер.

Читайте также:  Головка блока цилиндров

На сегодняшний день применение находят четыре типа форсунок:

– Механические;
– Электромагнитные (электромеханические);
– Электрогидравлические;
– Пьезоэлектрические.

Каждый тип форсунок имеет свои особенности и сферы применения.

Механические форсунки

Механическая форсунка — это «классическое» решение, которое применяется многие десятилетия и сейчас не теряет своей актуальности. Механическая форсунка — это, в сущности, клапан, открываемый при достижении определенного давления. Основу такой форсунки составляет корпус, внутри которого находится игла, которая под действием пружины закрывает сопло. Топливо от ТНВД под давлением поступает в кольцевую камеру между корпусом и иглой и приподнимает иглу — в этот момент открывается сопло, и топливо распыляется в камеру сгорания. При снижении давления игла снова закрывает сопло.

Механическая форсунка очень проста и надежна, однако она не может обеспечить характеристик, которые предъявляются к современным дизельным двигателям. Поэтому ее постепенно вытесняют другие типы форсунок.

Электромагнитные форсунки

Электромагнитная форсунка отличается от механической тем, что игла в ней поднимается под действием встроенного электромагнита по сигналу от контроллера. Электромагнит обычно располагается в верхней части форсунки, игла соединена с якорем электромагнита, поэтому при подаче напряжения она поднимается вверх и открывает сопло.

Сегодня обычные электромагнитные форсунки используются на инжекторных бензиновых двигателях, так как они плохо работают под теми высокими давлениями, которые необходимы для дизелей.

Электрогидравлические форсунки

Электрогидравлическая форсунка объединяет в себе преимущества электромагнитной и механической форсунок. В форсунке этого типа топливо давит на иглу с двух сторон — сверху и снизу, где находятся топливные камеры. Обе камеры связаны между собой, поэтому давление топлива в них равно и игла закрывает сопло. Однако верхняя камера (она называется камерой управления) через электромагнитный клапан связана со сливной магистралью, а топливо из впускной магистрали поступает в эту камеру через канал с сужением — дросселем.

Принцип действия электрогидравлический форсунки сводится к следующему. Когда клапан закрыт, игла прижата к седлу и закрывает сопло. При подаче на клапан импульса он открывается, топливо из камеры управления поступает в сливную магистраль и давление в камере резко падает — в этот момент игла, на которую топливо теперь давит только снизу, открывается, происходит впрыск. Камера управления в момент открытия форсунки остается связанной с впускной магистралью, однако впускной дроссель не дает топливу быстро заполнить эту камеру.

Электрогидравлическая форсунка получила широкое распространение в дизельных двигателях, в том числе и в системах впрыска топлива Common Rail. Эти простые и надежные устройства обеспечивают длительную и качественную работу двигателя.

Пьезоэлектрические форсунки

Пьезоэлектрические форсунки — наиболее современное и надежное решение, которое сегодня находит все более широкое применение на дизельных двигателях с системой впрыска Common Rail. В целом принцип действия этой форсунки повторяет принцип, заложенный в форсунках электрогидравлического типа, однако в ней клапан, открывающий путь топливу из верхней камеры в сливную магистраль, срабатывает под действием пьезоэлектрического кристалла.

Как известно, в ряде кристаллов наблюдается пьезоэлектрический эффект — под воздействием внешней силы они деформируются с образованием электрического заряда. Такие кристаллы подвержены и обратному эффекту — под действием электричества они деформируются, изменяя свои размеры. В пьезоэлектрических форсунках используются кристаллы, которые при подаче напряжения увеличивают свою длину и толкают собой поршень клапана, выпускающего топливо из верхней камеры в сливную магистраль.

Большое преимущество пьезоэлектрических форсунок — их быстродействие. Изменение длины кристалла и открытие клапана в них происходит в среднем в 4 раза быстрее, чем открытие клапана электромагнитного типа. Это открыло путь к реализации многократного впрыска за один такт, что улучшает характеристики двигателя. В современных дизельных моторах впрыск может производиться до девяти раз за один такт.

Топливная форсунка. Назначение, устройство, принцип работы

Видео: Устройство и принцип действия насос форсунки. Принцип работы форсунки инжекторного двигателя. Изучаем Common Rail. Дизельные форсунки. Разбираем топливную форсунку. Промывка топливной форсунки своими руками. Что убивает форсунки дизельного двигателя. Регулировка дизельных форсунок на стенде в домашних условиях. Работа распылителя и стенда КИ-562

Форсунка — это элемент системы впрыска, предназначенный для дозированной подачи топлива, его распыления в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси.

Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных двигателях устанавливаются форсунки с электронным управлением впрыска.

В зависимости от способа осуществления впрыска различают:

  • электромагнитные форсунки
  • электрогидравлические форсунки
  • пьезоэлектрические

Общий вид форсунки системы «Коммон рейл» фирмы «Бош» показан на рисунке.

Рис. Разрез электрогидравлической форсунки фирмы Бош:
1 – отводящий дроссель; 2 – игла; 3 – распылитель; 4 – пружина запирания иглы; 5 – поршень управляющего клапана; 6 – втулка поршня; 7 – подводящий дроссель; 8 – шариковый управляющий клапан; 9 – шток; 10 – якорь; 11 – электромагнит; 12 – пружина клапана

Форсунка состоит из:

  • электромагнита 11
  • якоря электромагнита 10
  • маленького шарикового управляющего клапана 8
  • запорной иглы 2
  • распылителя 3
  • поршня управляющего клапана 5
  • подпружиненного штока 9

Шарик клапана прижимается к седлу с усилием пружины и электромагнита. Сила пружины рассчитана на давление до 100 кг/см2, что значительно ниже давления в линии высокого давления (250…1800 кг/см2), поэтому только при приложении усилия электромагнита шариковый клапан не отойдет от седла, отделяя аккумулятор от линии слива. Игла распылителя форсунки в нерабочем состоянии прижимается к седлу пружиной распылителя – это предотвращает попадание воздуха в форсунку при пуске двигателя.

В отличие от бензиновых электромеханических фор­сунок, в форсунках «Коммон Рейл» электромагнит при давлении 1350 … 1800 кгс/см2 не в состоянии поднять за­порную иглу, поэтому используется принцип гидроусиления.

Рис. Принцип действия электрогидравлической форсунки:
а – форсунка в закрытом состоянии; b – форсунка в открытом состоянии; c – фаза закрытия форсунки

При создании давления в аккумуляторе, оно действует как на конусную поверхность иглы, так и на поршень управляющего клапана 5. Поскольку площадь рабочей поверхности поршня на 50% больше площади конусной поверхности иглы, игла распылителя продолжает прижиматься к седлу.

При подаче напряжения от блока управления на электромагнит 11, шток 9 якоря штока поднимается и открывается шариковый управляющий клапан 8. Давление в камере управления 7 падает в результате открытия дроссельного отверстия и топливо пропускается из зоны над поршнем управляющего клапана в зону слива. Давление на поршень управляющего клапана падает, так как подводящее дроссельное отверстие управляющего клапана имеет меньшее сечение чем отводящее. Запорная игла 2 при этом под действием высокого давления в кармане распылителя 3 открывается. Количество подаваемого топлива зависит от времени подачи напряжения в электромагнит 11, а значит от времени открытия шарикового управляющего клапана 8. При прекращении подачи напряжения на электромагнит 11, якорь под действием пружины опускается вниз, при этом шариковый управляющий клапан закрывается, давление в камере управления восстанавливается через специальный жиклер. Под действием давления топлива на поршень управляющего клапана 5, имеющего диаметр больше диаметра иглы, последняя закрывается.

На входе топлива в форсунку установлен аварийный ограничитель подачи топлива. Он предотвращает опорожнение аккумулятора через форсунку с зависшей иглой или клапаном управления, а также повреждение соответствующего цилиндра дизеля. В нем используется принцип возникновения разницы давлений по обе стороны от клапана 1 при прохождении топлива через его жиклеры 2. Сечение жиклеров, за­тяжка пружины 3 и диаметр клапана подобраны по максимальной продолжительности и расходу, т.е. подаче топлива.

Рис. Аварийный ограничитель подачи топлива через форсунку

В системах «коммон рейл» первых поколений общее количество горючей смеси, впрыскиваемой в цилиндр, разделялось на предварительное и основное. Однако более гармоничной является такая схема сгорания, когда во время одного рабочего такта горючая смесь будет разделена на возможно большее количество частей. До сих пор добиться этого было невозможно по причине инерционности традиционных форсунок с электромагнитным управлением.

Одним из путей совершенствования системы «коммон рейл» является увеличение быстродействия открытия форсунки. Минимальное время открытия форсунки для электромагнита с подвижным сердечником составляет 0,5 мс, что не позволяет оперативно изменять подачу топлива. Для более быстрого срабатывания форсунки в настоящее время применяется пьезокерамическая форсунка, которая работает вчетверо быстрее.

Известно, что при подаче электрического напряжения на пьезокерамическую пластинку она на несколько микрон изменяет свою толщину.

Пьезоэлемент, являющийся исполнительным элементом форсунки, представляет собой параллелепипед длиной 30…40 мм, состоящий из спеченных между собой 300 керамических пластинок (кристаллов), расширяющийся на 80 мкм всего за 0,1 мс, чего достаточно чтобы воздействовать на иглу форсунки с усилием 6300 Н. При этом для управления пьезоэлементом используют напряжение бортовой сети автомобиля.

Для усиления пьезоэффекта в керамику добавляют палладиум и цирконий. Пьезоэлемент потребляет энергию только при подаче напряжения и регенерирует ее при выключении напряжения, таким образом, являясь регенератором энергии.

Использование пьезоэлемента, кроме быстроты срабатывания, обеспечивает большую силу открытия клапана сброса давления над иглой форсунки и высокую точность хода для быстрого сброса давления подачи топлива.

Электрогидравлическая форсунка с пьезоэлементом показана на. Основными составляющими форсунки являются модуль исполнительного элемента, состоящего из пьезоэлектрического элемента и его составляющих, модуль плунжера, состоящего из поршней, амортизатора давления и пружины, клапан переключения, игла. Для окончательной очистки топлива применяется специальный стержневой фильтр.

Рис. Разрез пьезоэлектрогидравличе­ской форсунки:
1 ­– патрубок рециркуляции; 2 – электрический разъем; 3 – стержневой фильтр; 4 – корпус форсунки; 5 – пьезоэлектричесий элемент; 6 – сопряженный поршень; 7 – поршень клапана; 8 – клапан переключения; 9 – игла форсунки; 10 – амортизатор давления

Увеличение длины модуля исполнительного элемента преобразуется модулем соединителя в гидравлическое давление и перемещение, воздействующие на клапан переключения. Модуль плунжера действует как гидравлический цилиндр. На него постоянно воздействует давление подачи топлива 10 кгс/ см2 через редукционный клапан в обратной магистрали.

Топливо выполняет роль амортизатора давления между плунжером соединителя выпускного дросселя 8 и плунжером клапана 5 в модуле плунжера. Из пустого закрытого инжектора (присутствует воздух) воздух удаляется при стартерном пуске двигателя (с частотой вращения вала стартера). Помимо этого, инжектор наполняется топливом, подаваемым погруженным в топливном баке насосом, проходящим через управляемый обратный клапан против направления потока топлива.

Клапан переключения состоит из пластины клапана, плунжера клапана 5, пружины клапана и пластины дросселя 3. Топливо под давлением протекает через впускной дроссель 4 в пластине дросселя к игле форсунки и в камеру над иглой форсунки. Благодаря этому происходит выравнивание давления над и под иглой форсунки. Игла форсунки удерживается в закрытом положении силой пружины форсунки. При нажиме плунжера клапана 5 открывается канал выпускного дросселя и топливо под давлением вытекает через выпускной дроссель 8 большего размера, расположенный над иглой форсунки. Топливо под давлением поднимает иглу форсунки, в результате чего происходит впрыск. Благодаря быстрым командам на переключение пьезо-электрического элемента за один рабочий такт друг за другом производятся несколько впрысков.

Рис. Принцип работы пьезофорсунки:
1 – игла форсунки; 2 – пружина форсунки; 3 – пластина дросселя; 4 — впускной дроссель; 5 – плунжер клапана; 6 – линия высокого давления; 7 – соединительный элемент; 8 – выпускной дроссель; а – форсунка закрыта; б — форсунка открыта

Из-за особенностей процесса сгорания, присущих дизельным двигателям с турбонаддувом, для уменьшения шума и снижения выброса оксидов азота в цилиндры двигателя перед впрыском основной дозы топлива подается небольшая капля топлива (1…2 мм3) «пилотный впрыск», которая плавно перетекает в распыление остальной части топлива. Предварительный впрыск позволяет топливу воспламеняться быстрее. Давление и температура при этом возрастают медленнее чем при обычном впрыске, что уменьшает «жесткость» работы двигателя и его шум с одновременным снижением выбросов окислов азота. Характер процесса двойного впрыска показан на рисунке:

Читайте также:  Виды стабилизатора поперечной устойчивости

Рис. График процесса двойного впрыска и характер распыления топлива

При холодном двигателе и в режиме, приближенном к холостому ходу, происходит два предварительных впрыска. При увеличении нагрузки предварительные впрыски один за одним прекращаются, пока при полной нагрузке двигатель не перейдет в режим основного впрыска. Оба дополнительных впрыска необходимы для регенерации сажевого фильтра.

Благодаря тому, что пьезофорсунки имеют намного меньшее время срабатывания, чем традиционные электромагнитные, стало возможным разделение горючей смеси на несколько отдельных микродоз: после многократных предварительных впрыскиваний очень небольших количеств горючей смеси следуют либо основное впрыскивание, либо при необходимости многие так называемые «послевпрыскивания».

Рис. Характер протекания процесса многоступенчатого впрыска

Время между предварительным впрыскиванием и основным впрыскиванием составляет 100 мс. Объем топлива, попадающего в цилиндр в момент каждого предварительного впрыскивания, составляет 1,5 мм3. Это делается для равномерного распределения давления в камере сгорания и, соответственно, уменьшения шума, создаваемого в процессе сгорания. После впрыскивания, в свою очередь, служат для снижения токсичности отработавших газов. Если в конце цикла сгорания произвести еще одно впрыскивание в цилиндр, то оставшиеся частицы сгорают лучше. Кроме того, в случае, когда во впускной системе установлен фильтр для улавливания несгоревших частиц, такая технология за счет высокой температуры способствует его очистке. Это особенно актуально для двигателей с большим рабочим объемом.

Более того, сейчас стало возможным использовать до семи тактов впрыска вместо трех за один рабочий процесс. Благодаря этому появляются новые возможности для увеличения номинальной мощности двигателя и еще более точного контроля за составом отработавших газов.

Новое поколение форсунок позволяет регулировать не только количество впрыска по времени и его фазы, но и управлять подъемом иглы, что позволяет более четко управлять процессом впрыска.

В настоящее время производители дизельной топливной аппаратуры, например фирма Бош, разработала системы Common Rail с давлением впрыска до 2500 кгс/см2. В этих системах форсунка отличается от традиционной тем, что максимальное давление создается не гидроаккумуляторе, а в самой форсунке. Она снабжена миниатюрным гидроусилителем давления и двумя электромагнитными клапанами, позволяющими варьировать момент впрыска и количество топлива в пределах одного рабочего цикла. Таким образом, здесь совмещены принципы работы Common Rail и форсунки.

Другим направлением форсунок фирмы Bosch является устройство в форсунках небольшого напорного резервуара, сокращающего обратный ход к циклу низкого давления. Это позволяет увеличить давление впрыска и КПД системы.

Форсунки с повышенным давлением впрыска соответствуют нормам Евро-6.

Что такое форсунки — виды, устройство и принцип работы

Форсунка – неотъемлемая часть бензиновых и дизельных двигателей внутреннего сгорания. Поговорим более подробно, что она из себя представляет, по какому принципу работает, каково их назначение и в каких узлах транспортного средства используется.

Что такое форсунки в автомобиле

В широком смысле форсунка – это нагнетательный насос, который используется для распыления различных жидкостей (а иногда и порошков) под высоким давлением. В автомобильных двигателях эти устройства выполняют ту же самую функцию. Основная область их применения – распыление топливной смеси в инжекторных бензиновых и дизельных двигателях внутреннего сгорания.

Первая механическая форсунка была сконструирована в 1864 году российским ученым Александром Шпаковым, а затем усовершенствована другим отечественным инженером, Владимиром Шуховым. В двигателях внутреннего сгорания устройство впервые применил Рудольф Дизель. С появлением инжекторных моторов оно стало нужно и на бензиновых силовых агрегатах.

Для чего нужны форсунки

Форсунки необходимы для формирования топливной смеси внутри цилиндров. Благодаря работе прибора горючее распыляется, смешивается с воздухом и образует своеобразную парообразную взвесь. Она гораздо легче воспламеняется.

Кроме того, форсунки выполняют и другую важную функцию. Они дозируют топливо, которое поступает в цилиндровую группу.

Устройство форсунки

По сути, современная форсунка представляет собой клапан на базе электромагнита с программным управлением. Она включает в себя следующие конструктивные элементы:

  • резиновая прокладка;
  • фильтр;
  • коннектор;
  • индукционная катушка с подвижным сердечником, управляемый ЭБУ;
  • возвратная пружина сердечника;
  • входной коллектор;
  • распылительная игла;
  • сопло.

Находятся форсунки на головке цилиндроблока. Сколько их там, зависит от общего количества цилиндров, так как для каждого требуется по одной. В подавляющем большинстве легковых автомобилей их 4.

Похожие статьи

Что касается схемы расположения, то в большинстве «легковушек» форсунки выстроены в один ряд и закреплены на полой металлической трубке, по которой в них и поступает топливо.

Узнать, есть ли форсунки в конкретном двигателе и где они расположены проще всего прочитав технический паспорт транспортного средства.

До того, как форсунки начали использовать на инжекторных двигателях совместно с блоком управления, они имели несколько другое устройство. Вместо индукционной катушки с подвижным сердечником в них стоял клапан высокого давления, который срабатывал после нагнетания горючего топливным насосом при достижении определенного давления. Подобные устройства до сих пор используются на некоторых моделях дизельных двигателей.

Принцип работы форсунки

Работу автомобильной форсунки для большей наглядности можно разделить на несколько этапов:

  • топливо под давлением поступает на входной коллектор устройства;
  • ЭБУ в зависимости от степени нажатия на акселератор посылает на катушку электроток того или иного напряжения;
  • сердечник катушки перемещается, в результате чего игольчатый клапан переходит в открытое положение;
  • топливо начинает поступать в сопло, располагающееся на конце иглы, после чего оказывается в цилиндре и формирует смесь с нагнетенным туда воздухом.

Если речь идет о механической форсунке, то принцип ее работы будет несколько отличаться:

  • под действием топливного насоса на 3-м такте двигателя горючее начинает поступать во входной коллектор форсунки;
  • под воздействием интенсивного давления, обеспеченного насосом, клапан устройства открывается и топливо попадает в цилиндр.

Подобным образом форсунки работают на дизельных двигателях.

Типы форсунок

В современных транспортных средствах чаще всего используется три типа деталей:

  • электромагнитная;
  • электрогидравлическая;
  • пьезоэлектрическая.

Поговорим про каждый из них более детально.

Электромагнитная

Клапаном, отвечающим за подачу горючего на сопло детали, в данном случае управляет индукционная катушка с подвижным сердечником. А ей, в свою очередь, управляют программные алгоритмы, внесенные в электронный блок управления. Они работают в зависимости от степени нажатия на акселератор.

На сегодняшний день электромагнитные форсунки являются одними из самых распространенных. Именно этот вид устройств устанавливают в подавляющее большинство бензиновых инжекторных моторов, которыми оборудуют легковые автомобили.

Подробнее устройство электромагнитного варианта устройства и принципа его работы описано выше.

Электрогидравлическая

Представляет собой гибрид электромагнитного и механического типа устройств. Используется в современных дизелях, оснащенных ЭБУ.

В основе работы этого типа устройства – разнице давления горючего. Когда клапан находится в закрытом состоянии, давление больше в области поршня, расположенного в камере управления, и менее интенсивно на игле. Когда необходимо произвести впрыск, с блока управления поступает соответствующий сигнал и электромагнитный клапан приоткрывается. При этом он распределяет топливо таким образом, что на поршень оно оказывает меньшее давление, чем на иглу. Благодаря подобному перераспределению он находиться в открытом состоянии. В результате этого игла приподнимается и бензин или ДТ может свободно поступать в цилиндр. Именно в этот момент и происходит собственно впрыск.

Пьезоэлектрическая

Представляет собой усовершенствованный вариант электрогидравлической форсунки. Имеет по сравнению с ней лучшие характеристики, так как очень быстро срабатывает. Благодаря этому за один такт можно произвести несколько впрысков топлива подряд (обычно 3 – 4). Это особенно важно для дизельных двигателей (что и обусловило область применения этой разновидности детали).

Конструкция пьезоэлектрической форсунки в точности повторяет таковую у электрогидравлической. Главное отличие состоит в том, что в данном случае вместо клапана-электромагнита на устройство устанавливают пьезоэлектрический элемент, который увеличивается в размерах при поступлении на него электрического тока.

Когда клапана находится в закрытом состоянии, на поршень камеры управления топливо оказывает интенсивное давление, а на иглу – низкое. При подаче тока на пьезоэлемент с ЭБУ он увеличивается, толкает поршень и тем самым открывает клапан. Давление перераспределяется – наиболее интенсивное оказывается на иглу. Топливо свободно сквозь нее проходит, в результате чего происходит впрыск.

Таким образом, количество поступающего в цилиндр топлива при использовании этой конструкции определяется длительностью воздействия электрического тока на пьезоэлемент, а также давлением топлива.

Следует отметить, что бывают и другие разновидности форсунок (например, механическая). Однако они постепенно выходят из употребления.

Основные проблемы топливных форсунок

Понять, что с форсункой возникли проблемы, можно по следующим «симптомам»:

  • рывки во время движения;
  • существенное ухудшение динамики;
  • вибрация или «троение» мотора при переключении передачи или снижении скорости;
  • значительное увеличение расхода горючего.

Если речь идет о дизельном моторе, то к перечисленным признакам добавляется появление черного дыма из выхлопной трубы. Он появляется вследствие излишнего поступления топлива в цилиндр, которое просто не успевает полностью сгорать.

Неисправности детали могут возникнуть по самым разным причинам. Вот наиболее распространенные:

  • повышенное количество серы в горючем;
  • коррозия;
  • физический износ;
  • засорение;
  • неправильный монтаж;
  • перегрев;
  • попадание воды.

Если неприятности вызваны появлением окислов на внутренних стенках устройства или его засорением, поможет промывка. Ее можно выполнить несколькими способами.

Первый – залитие в бензобак машины специального очищающего состава. Это наиболее простой метод. Он полезен не только для чистки, но и для предотвращения дальнейшего появления загрязнений. Но он подходит только для относительно новых автомобилей. Это обусловлено тем, что таким способом нельзя удалить загрязнения большой интенсивности.

Второй способ – использование специальной промывочной установки. Она есть на каждой станции технического обслуживания. При этом грязь удаляется и с форсунок, и с топливной рамы. Следует помнить, что такой метод не подходит для сильно изношенных моторов. Также в автосервисе можно почистить форсунки с помощью ультразвука.

Наконец, третий способ – это очистка со снятием. Она подразумевает демонтаж форсунок с головки цилиндроблока и последующую ручную очистку. Метод применяют при наличии сильных загрязнений. Кроме того, он позволяет выявить наличие неисправностей.

Если на форсунке обнаружены физические повреждения или сильный износ, единственный вариант – ее полная замена. Произвести ее можно и самостоятельно, не обращаясь в автосервис. Для этого деталь извлекают из головки цилиндроблока, отсоединяют от системы подачи топлива и проводов, ведущих к ЭБУ, а затем в обратном порядке устанавливают на ее место новую.

Устройство и обслуживание форсунок автомобильного двигателя

Форсунка топливной системы – один из важных компонентов, влияющих на параметры работы двигателя внутреннего сгорания, требует периодического обслуживания по ее очистке от отложений, возникающих на рабочих частях в процессе ее эксплуатации.

От качества образования топливно-воздушной смеси в камере сгорания зависит мощность, расход топлива и запуск двигателя. Поддержание форсунок в чистом состоянии продлевает срок их службы и увеличивает моторесурс двигателя.

Существует несколько типов топливных форсунок (инжекторов), используемых в двигателях внутреннего сгорания легковых автомобилей, и методов их промывки, о которых пойдет речь в этой статье.

Содержание

Виды топливных форсунок

В зависимости от топлива, используемого в автомобильном двигателе, форсунки классифицируются на:

Форсунки для бензинового двигателя.

Форсунки для дизельного двигателя.

Устройство форсунки бензинового двигателя

Современные форсунки для бензинового двигателя бывают двух вариантов исполнения:

  • форсунка впрыска топлива во впускной коллектор,
  • форсунка впрыска топлива в камеру сгорания (непосредственный впрыск).
Читайте также:  Замена наружного шруса и пыльника наружного шруса Skoda Fabia

Топливные форсунки состоят из корпуса с топливными каналами, катушки и иглы клапана с якорем электромагнита. Управление количеством подачи топлива производится электромагнитным клапаном.

Топливо подается в корпус форсунки через тонкое сито. Топливная форсунка либо закрыта (нет сигнала на входе), либо открыта (есть сигнал на входе).

При непосредственном впрыске топлива сопло каждой топливной форсунки оснащено несколькими выходными отверстиями. Такой впрыск называют многоструйным впрыском. Преимущество многоструйного впрыска перед одноструйным впрыском: факел распыла оптимальным образом адаптирован к камере сгорания по форме и углу расположения.

Сопло каждой форсунки оснащено шестью отверстиями. Каждая из шести струй топлива индивидуально адаптирована к условиям камеры сгорания.

Центральное положение топливной форсунки обеспечивает более равномерное распределение топлива и оптимальное приготовление смеси в камере сгорания. При расположении форсунки под углом к вертикальной оси хода поршня сопло каждой форсунки имеет семь выпускных отверстий.

1. Топливная форсунка. 2. Свеча зажигания. 3. Выемка в днище поршня. 4. Струя впрыскиваемого топлива. A Центральное расположение выпускных отверстий. B Эксцентрическое расположение выпускных отверстий.

Топливо впрыскивается в камеру сгорания под точно вычисленным углом, поэтому выпускные отверстия топливной форсунки расположены эксцентрически. Впрыскивание топлива под точно определенным углом препятствует тому, чтобы топливо попадало в открытые впускные клапаны.

Кроме того, каждая из семи конических струй индивидуально адаптирована к условиям камеры сгорания. За счет этого создается структура струи, чья форма обеспечивает оптимальное приготовление горючей смеси в камере сгорания.

Рисунок показывает сравнение впрыска во впускной коллектор и непосредственного впрыска бензина.

  1. Впрыск во впускной коллектор.
  2. Непосредственный впрыск бензина.
  3. Количество впрыскиваемого топлива.
  4. Полная нагрузка.
  5. Холостой ход.
  6. Время впрыскивания в миллисекундах.

Существенным различием является более высокое давление топлива и значительно более короткое время, имеющееся в распоряжении для впрыскивания топлива в камеру сгорания.

Впрыск топлива во впускной коллектор осуществляется за два оборота коленчатого вала. При частоте вращения коленчатого вала 6000 об/мин соответствует продолжительности впрыска около 20 мс.

Потребление топлива при непосредственном впрыске на холостых оборотах значительно ниже по отношению к полной нагрузке, чем при впрыске во впускной коллектор (коэффициент 1:12). Продолжительность впрыска в режиме холостого хода составляет примерно 0,4 мс.

Устройство форсунки дизельного двигателя

В дизельных двигателях применяется несколько типов топливных форсунок:

  1. форсунки с электромагнитными клапанами,
  2. пьезоэлектрические форсунки,
  3. насос-форсунка (рассматриваться не будет).

С помощью форсунок осуществляется управление началом впрыска и количеством впрыскиваемого топлива.

Устройство форсунки с электромагнитным клапаном

Топливо под высоким давлением через канал направляется в форкамеру распылителя и одновременно через впускной дроссель в управляющую камеру клапана. Управляющая камера клапана соединена с возвратом топлива через выпускной дроссель, который открывается электромагнитным клапаном.

Устройство пьезоэлектрической форсунки

Открытие и закрытие форсунки выполняется с помощью пьезоэлемента, расположенного внутри форсунки. Пьезоэлектрическая форсунка включается примерно в четыре раза быстрее, по сравнению с форсункой, управляемой электромагнитом. Это дает следующие преимущества:

  • многоточечный впрыск с переменными началом впрыска и интервалами,
  • подача малых доз топлива для предварительного впрыска,
  • низкий уровень шума (до 3 дБ),
  • экономия расхода топлива (до 3%),
  • уменьшения выброса отработавших газов (до 20%),
  • повышение мощности двигателя (до 7%),
  • улучшения плавности хода.

В пьезоэлектрических форсунках происходит косвенное управление иглой распылителя, это означает, что открытие и закрытие иглы распылителя происходит через гидравлический контур. Гидравлический контур состоит из области низкого и высокого давления.

Управляющий клапан является переходом между областью высокого давления и низкого давления – доза впрыскиваемого топлива зависит от длительности открытия клапана управления.

Техническое обслуживание форсунок

Промывка автомобильных форсунок – такая же необходимая процедура ухода за автомобилем, как замена масла, тормозной жидкости, поддержание необходимого давления в шинах и т. д. Большинство автомобилистов эту процедуру просто игнорируют, ссылаясь на недостаток времени, отсутствие “лишних” денег или откладывают на потом, а значит – никогда.

Рано или поздно наступает момент, когда (особенно в холодное время года), начиная утром запускать двигатель, сделать это с первой попытки не удается, и не обращая внимание на этот симптом, продолжают эксплуатировать автомобиль дальше.

Более щепетильные владельцы авто отправляются на компьютерную диагностику и, тратя деньги и время, которые можно было вложить в своевременный уход за топливной системой, получают, чаще всего, не корректное заключение о причинах такого поведения двигателя.

Начинается замена свечей, вспоминают про топливный фильтр, который “сто лет” уже не меняли, смена места заправки и т. д. Когда “танцы с бубном” вокруг автомобиля не приносят никаких результатов и все возможные и невозможные действия проделаны, дело доходит до форсунок.

Находится “опытный” гаражный автомастер, который дает совет: залить в бензобак присадку в топливо для очистки форсунок, и хорошо, если это хоть частично решает проблему, – некоторые присадки так “хороши”, что растворяя отложения на стенках бензобака и топливных магистралях серу и фракции тяжелых соединений, не останавливаясь в топливном фильтре, засоряют топливные форсунки окончательно.

Есть два пути решения этой проблемы: радикальный – заменить форсунки или буксировать автомобиль в автомастерскую для снятия и промывки на стенде ультразвуковой очистки форсунок, что тоже не всегда помогает.

Первая причина – недостаточная квалификация мастера: незнание устройства форсунок, которые он берется промывать. Ультразвуковые ванны для очистки форсунок разрушают керамические детали, которые могут присутствовать в конструкции – такие форсунки чистить в ультразвуковой ванне категорически запрещено.

Вторая причина – старость форсунок: ультразвуковое колебание может разрушить старое, “высохшее” лаковое изоляционное покрытие проводов катушки в форсунке, и происходит замыкание в обмотке, что случается не часто, но если это возможно – значит не исключено. Чтобы избежать всех этих неприятностей, надо вовремя проводить химическую промывку форсунок.

Химическая промывка форсунок

Существует большое количество стендов разной конструкции для химической промывки топливных форсунок, но принцип выполнения данной процедуры един – подсоединение аппарата к топливной рампе и работа двигателя на сольвенте (жидкость для промывки), который является химическим растворителем и топливом одновременно.

Процедура занимает около двух часов – час на промывку и около часа на подключение и отключение аппарата. Для двигателей объемом до двух литров требуется один литр промывочной жидкости. При большем объеме двигателя необходимо больше сольвента.

При подготовке к промывке магистраль подачи топлива подключается к обратной магистрали в бензобак, но последние лет десять автомобили с такой конструкцией топливной системы не производятся и приходится отключать бензонасос, что иногда бывает сделать проблематично.

Снять электрический разъем с бензонасоса невозможно из-за его расположения под кузовом или затрудненного доступа (не на всех автомобилях заднее сиденье снимается легко и быстро). На некоторых моделях автомобилей предохранитель бензонасоса защищает еще и электрическую цепь зажигания (например, Форд фьюжен и Форд фиеста).

Снять реле бензонасоса, интегрированное в модуль управления электрооборудованием кузова, не представляется возможным технически, и много других “подводных камней”, возникающих в зависимости от марки автомобиля.

В этом случае глушится магистраль подачи, и циркуляция топлива происходит через обратный клапан в бензонасосе, что является нарушением технологии промывки.

При обслуживании форсунок дизельного двигателя без подкачивающего насоса в топливном баке, когда глушится магистраль подачи топлива, необходимо ее не “завоздушить” потому, что без специнструмента прокачать ее потом будет очень трудно, а иногда не возможно.

Нельзя забывать и о возвратной магистрали с топливных форсунок, в которой специальным клапаном поддерживается определенное давление для их корректной работы, глушить ее нельзя и оставлять подключенной к топливному фильтру тоже.

Надо организовать сбор промывочной жидкости в отдельную емкость (если нет возможности подключения к промывочному стенду) для дальнейшего использования в процедуре промывки форсунок. Во время химической промывки происходит еще и чистка камеры сгорания, поршней и клапанов, что является плюсом, по сравнению с ультразвуковой очисткой форсунок.

Как часто промывать форсунки, зависит от многих факторов – режима эксплуатации двигателя, качества используемого топлива, отношения владельца к своему автомобилю и др. При нормальных режимах эксплуатации и приемлемом качестве топлива производители рекомендуют промывку топливных форсунок каждые 25-30 тысяч километров пробега и делать процедуру перед заменой масла в двигателе.

Чаще всего для промывки используют очиститель форсунок для бензиновых двигателей “Лавр”, вариант которого есть и для дизельных двигателей. На его упаковке указано, что после промывки замена свечей не требуется, но лучше промывать форсунки, используя старые свечи, специально приготовленные для этого случая.

При использовании бельгийской промывочной жидкости “Винс”, после промывки форсунок, замена масла и свечей обязательна.

Начинать промывку топливных форсунок надо при полностью прогретом двигателе, так как запустить холодный двигатель на промывочной жидкости не получится, а что касается отечественных автомобилей, даже небольшое падение температуры во время подключения устройства для чистки форсунок сильно затрудняет запуск двигателя.

Давление подачи сольвента рекомендуется выставлять 3 бара, исключением являются старые отечественные автомобили с обратной магистралью возврата топлива, с рабочим давлением в топливной рампе 2,2 – 2,6 бар.

После 10-и минут работы двигателя на холостых оборотах желательно его остановить на 10 минут для “откисания” деталей, контактирующих с промывочной жидкостью, после повторного запуска периодически повышать обороты до 2000-2500 об/мин до завершения промывки.

При использовании жидкости “Винс” – этого лучше не делать, так как сгорание сольвента “Винс” хуже, чем у жидкости “Лавр”, поэтому можно “залить” свечи со всеми вытекающими после этого проблемами для повторного запуска двигателя.

Ультразвуковая промывка форсунок

Во время эксплуатации форсунок на их рабочих поверхностях происходит отложение мягких и твердых фракций. При постоянном уходе за топливными форсунками мягкие отложения смываются, а отложения твердых составов удаляются частично и постепенно накапливаются.

Установка ультразвуковой очистки форсунок полностью удаляет все виды загрязнений, возникающих во время работы инжектора. В зависимости от времени, необходимого для снятия форсунок, стоимость процедуры очистки зависит от конструкции двигателя.

Перед погружением форсунок в ультразвуковую ванну, их необходимо проверить на стенде, чтобы сравнить результаты измерения производительности до и после очистки. В ультразвуковой ванне процесс очистки происходит за счет кавитации – образованию и последующему схлопыванию пузырьков газа под действием ультразвуковых волн.

Перед повторной проверкой производительности и факела распыла необходимо дать обратный ход жидкости для удаления продуктов очистки из корпуса форсунки. Для очистки и для проверки типы жидкости отличаются друг от друга. Перед установкой форсунок на двигатель подлежат замене все уплотнительные кольца.

Дизельные инжекторы с электромагнитными катушками проверяются на производительность на стенде для проверки форсунок дизельного двигателя. Производится замена распылителей после корректировки регулировочными шайбами отклонений от необходимых параметров работы.

Перед установкой форсунок уплотнительные кольца подлежат обязательной замене.

Для пьезоэлектрических форсунок процедура ремонта и регулировки не предусмотрена.

Все эти процедуры обслуживания топливных форсунок послужат увеличению их срока службы, экономии расхода топлива, повышению мощности двигателя и избавят владельца автомобиля от неприятных сюрпризов. Вовремя проводите техническое обслуживание форсунок и используйте качественное топливо. Будете в Краснодаре, приезжайте промывать форсунки.

С уважением, Олег!

Сделай репост – выиграй ноутбук!

Каждого 1 и 15 числа iBook.pro разыгрывает подарки.

  • Нажми на одну из кнопок соц. сетей
  • Получи персональный купон
  • Выиграй ноутбук LENOVO IdeaPad

LENOVO IdeaPad Intel Core i5, 8ГБ DDR4, SSD, Windows 10

Ссылка на основную публикацию