Забутовка трубопроводов технология

Индустриальный мир

Санация навивкой с забутовкой

Транспортное средство для доставки навивочной машины и принадлежностей

Навивочная машина (транспортировка грузовым автомобилем)

Гидравлический агрегат для навивочной машины (транспортировка грузовым автомобилем)

Генератор (транспортировка грузовым автомобилем)

Колесный вилочный погрузчик

Стамеска, долото, зубило

Забутовочный материал (фирменный продукт Blitzd?mmer®)

Разжижитель (элюент) и порообразующая добавка

2. Подготовка стройплощадки

Подготовка строительной площадки подразумевает под собой меры по обеспечению безопасности дорожного движения, обеспечение площадок для станков и склада для оборудования и материалов, а также подвод водоснабжения и электроэнергии.

В ходе процесса навивки в зависимости от конкретной ситуации можно отказаться от принятия мер безопасности в случае заполнения санируемого коллектора водой до 40%.

Небольшой поток может быть использован в последующем для лучшего движения трубы в процессе навивки и для фиксации трубы во время забутовки.

Очистка коллектора при использовании метода навивки осуществляется, как правило, посредством промывки под высоким давлением.

К подготовительным работам для релайнинга относится также устранение препятствий, таких как отвердевших отложений, врезок других коммуникаций, песка и т.д. Их устранение осуществляется при необходимости вручную при помощи фрезы, кувалды и зубила.

Врезки других коммуникаций

Ветки каналов, впадающие в коллектор, подлежащий санации, необходимо заглушить перед началом работ по восстановлению.

Контроль качества и количества материалов и оборудования

При доставке на стройплощадку необходимых материалов и оборудования осуществляется проверка их комплектности и качества. При этом, например, профиль проверяется на соответствие данным согласно сертификату качества для своей маркировки, достаточную длину, а также возможные повреждения, возникшие в результате транспортировки; фирменный забутовочный материал Blitzd?mmer® в свою очередь проверяется на достаточное количество и надлежащие условия хранения.

Перед монтажом навивочной машины может потребоваться частичное или полное удаление основания камеры, чтобы обеспечить соосность между машиной и санируемым коллектором. Удаление осуществляется, как правило, вскрытием основания камеры при помощи перфоратора или вручную с помощью кувалды и зубила.

Навивка трубы может осуществляться как по течению потока, так и против течения в зависимости от размеров камеры колодца и возможностей доступа к ней.

В нашем случае навивка трубы осуществляется против течения, так как камера колодца в низшей точке имеет большие размеры, что значительно облегчает процесс монтажа навивочной машины.

3. Монтаж навивочной машины

Доставка навивочной машины

Использованная в нашем примере навивочная машина с гидроприводом предназначена для футеровки трубопроводов с диаметром от 500 DN до 1500. В зависимости от диаметра трубопровода, в который навивается новая труба, используются навивочные коробы различного диаметра.

Вначале навивочная машина, разобранная на составные компоненты, доставляется к стартовому колодцу. Она состоит из лентопротяжного механизма и навивочного короба.

Опускание частей машины в шахту и монтаж навивочной машины

Составные части навивочного короба опускаются вручную в стартовую шахту и там монтируются.

Для диаметров до 400 DN машина может опускаться в шахту в собранном виде.

Перед опусканием лентопротяжного механизма с гидроприводом в стартовую шахту необходимо снять транспортировочные лапы лентопротяжного механизма.

Лентопротяжный механизм с гидроприводом монтируется на навивочный короб непосредственно в стартовой шахте. При этом приемная часть навивочной машины должна находиться ниже уровня горловины колодца для обеспечения беспрепятственной подачи профиля в лентопротяжный механизм.

Монтажные работы завершаются подключением гидропривода навивочной машины к гидравлическому агрегату, расположенному возле стартовой шахты.

Затем необходимо проверить соосность навивочной машины и санируемого коллектора, в противном случае в процессе навивки навиваемая труба может застопориться о стенки коллектора или испытывать сильное сопротивление с их стороны, что может негативно сказаться на длине санируемого участка.

4. Подготовка профиля

Разматывание и нарезка профиля

Для того чтобы первый виток навиваемой трубы находился под правильным углом к оси трубы, необходимо нарезать профиль при помощи «болгарки» в соответствии с диаметром трубы. Для этого необходимо размотать часть профиля с катушки, расположенной на станине.

Нарезанный профиль подается при помощи направляющего ролика, закрепленного на стреле манипулятора или другом приспособлении, в стартовую шахту.

Профиль подается в лентопротяжный механизм, проходит по внутренней стороне навивочного короба (следить за тем, чтобы профиль попадал в пазы на роликах; при необходимости поправить профиль вручную) и затем соединяется между собой при помощи так называемого замка-защелки (потери в диаметре за счет толщины профиля около 1-2 см).

Профиль в наличии

Диапазон диаметров от DN 200 до DN 1500.

5. Процесс навивки

Небольшой поток приподымает навиваемую трубу и уменьшает трение о нижнюю часть санируемого коллектора.

Профиль, образующий трубу, поступательно подается из навивочного короба вращательными движениями в направлении санируемого коллектора. При этом необходимо следить за тем, чтобы навиваемая труба не подвергалась сильному трению о стенки старого канала и не цеплялась за стыки, врезки и т.д.

Долгосрочная водонепроницаемость навиваемой трубы достигается за счет подачи специального ПВХ-клея в замки-защелки отдельных витков профиля.

Технологии защелкивания замков.

Клей подается в паз на одной стороне профиля, после чего сразу же происходит защелкивание замка с другой стороны профиля и таким образом возникает надежное сцепление обеих частей замка-защелки. Данный вид соединения получил также название метода «холодной сварки».

Технологии защелкивания замков.

Клей подается в паз на одной стороне профиля, после чего сразу же происходит защелкивание замка с другой стороны профиля и таким образом возникает надежное сцепление обеих частей замка-защелки. Данный вид соединения получил также название метода «холодной сварки».

6. Забутовка/Перекрытие межтрубного пространства раствором

Демонтаж машины и подгонка трубы.

Согласно метражу, нанесенному на обратной стороне профиля, можно рассчитать длину навитой трубы. После навивки трубы необходимой длины следует проверить, совпадает ли расстояние от конца трубы до приемного колодца с длиной трубы, выступающей из стартового колодца.

Если они совпадают, то навитая труба обрезается в стартовом колодце при помощи «болгарки».

Навитая труба, поддерживаемая потоком в коллекторе, легко задвигается двумя рабочими из стартового колодца в сторону приемного колодца, так что края трубы точно совпадают с краями обоих колодцев.

Данные действия позволяют сэкономить материал, так длина навитой трубы точно соответствует длине санируемого коллектора с учетом части трубы, выступающей в стартовый колодец и задвигаемой позже в коллектор.

Затем навивочная машина вновь демонтируется на отдельные части и извлекается из стартового колодца.

Перекрытие межтрубного пространства

Перекрытие межтрубного пространства между старой трубой и навитой трубой достигается при помощи внутренней цементировки сульфатсодержащим цементным раствором пространства около 20 см от края колодца. В зависимости от уровня подземных вод и диаметра трубы может возникнуть необходимость в б?льшем количестве патрубков для залива раствора и выпуска воздуха.

Перекрытие межтрубного пространства в высшей точке.

Вначале производится перекрытие межтрубного пространства в высшей точке (в данном случае – это приемный колодец). После заглушки межтрубного пространства и вставки патрубков для выпуска воздуха в основание и вершину цементного перекрытия сточный поток временно блокируется (регулировка потока), таким образом, работы в камере колодца могут проводиться без влияния со стороны сточных вод. Сточная вода, которая еще находится в межтрубном пространстве, стекает в направлении низшей точки, таким образом, межтрубное пространство опорожняется и готово к заливке цементным раствором. После завершения работ по перекрытию межтрубного пространства сточная вода пускается по навитой трубе санируемого коллектора.

Поднятие уровня воды в навитой трубе.

В ходе данного процесса также осуществляется регулировка сточного потока, в ходе которого навитая труба закрывается посредством, так называемого пузыря со сквозной профилированной трубой и трубой для регулировки уровня воды в навитой трубе. Таким образом, осуществляется поднятие уровня воды в навитой трубе и фиксация трубы на подошве старого канала в ходе процесса двухфазного заполнения межтрубного пространства. Тем самым гарантируется сохранение угла наклона и исключается возможность перегиба.

Перекрытие межтрубного пространства в низшей точке

Затем осуществляется перекрытие межтрубного пространства в низшей точке (в нашем случае это стартовый колодец).

По необходимости в свод перекрытия монтируются трубы для залива раствора, а патрубки для отвода воздуха в свод и подошву перекрытия. Труба, интегрированная в пузырь, имеет профильное наружное покрытие и не обеспечивает полную герметичность, что позволяет вытекать определенному количеству сточной воды. При помощи трубы для определения уровня воды всегда можно контролировать уровень сточных вод в навитой трубе.
Первый этап забутовки.

В нашем случае забутовка межтрубного пространства осуществляется из низшей точки в два этапа. Для этого у края колодца устанавливается резервуар для замеса забутовочного материала, к которому подсоединяется шланг для подачи раствора. Замешивание фирменного забутовочного материала марки Blitzd?mmer осуществляется согласно рекомендациям производителя в специальных резервуарах различных объемов.

Далее открывается вентиль резервуара-миксера, и раствор Blitzd?mmer без оказания внешнего давления свободно вливается в межтрубное пространство между старым каналом и новой навитой трубой. Сточная вода, заполнившая навитую трубу, препятствует ее всплытию.

Процесс замешивания и подачи раствора продолжается до тех пор, пока раствор не начнет вытекать из патрубка для отвода воздуха, вмонтированного в подошву перекрытия в низшей точке.

Сравнивая количество использованного забутовочного раствора с расчетным количеством, можно проверить, остается ли раствор в межтрубном пространстве или же уходит в грунт через свищи в старом канале. Если израсходованное количество раствора совпадает с расчетным, процесс забутовки продолжается, пока раствор не начнет вытекать из патрубка для отвода воздуха, вмонтированного в свод перекрытия в низшей точке. Первый этап забутовки считается завершенным.

Второй этап забутовки.

Затвердевание забутовочного материала длится 4 часа, при этом происходит незначительная осадка раствора в межтрубном пространстве. После затвердевания раствора начинается замешивание забутовочного материала Blitzd?mmer для второй фазы забутовки. Процесс заполнения межтрубного пространства можно считать завершенным, когда раствор начинает вытекать из патрубка отвода воздуха, вмонтированного в свод перекрытия в высшей точке.

Для контроля качества берется проба забутовочного раствора, вытекающего из патрубка для отвода воздуха в приемном колодце.

Затем осуществляется демонтаж патрубков для залива раствора и отводящих воздух патрубков в стартовом и приемном колодцах. Сквозные отверстия в перекрытиях цементируются.

7. Заключительные работы

Частично взломанная подошва камеры колодца восстанавливается.

Работы по интеграции врезок в новый канал осуществляются роботом.

Для контроля качества работ по восстановлению трубопровода проводится инспекция самого трубопровода, а также испытание на герметичность согласно DIN EN 1610.

Е36-2-142. Забутовка пространства между тоннелем и трубопроводом

Указания по применению норм

Нормами предусмотрена забутовка тоннеля песком при помощи пневмоподатчика или вручную, цементным раствором – при помощи растворонагнетателя.

Проходчик 5 разр.

Состав работ

При забутовке вручную

1. Перемещение вагонеток с песком к месту забутовки. 2. Забутовка тоннеля вручную. 3. Откатка порожних вагонеток к стволу.

При забутовке пневмоподатчиком

1. Обслуживание пневмоподатчика при загрузке песком. 2. Забутовка тоннеля. 3. Очистка пневмоподатчика и транспортирующего трубопровода.

При забутовке растворонагнетателем

1. Выбивка деревянных пробок. 2. Подготовка и заправка растворонагнетателя. 3. Нагнетание цементного раствора за трубу. 4. Перестановка сопла и шлангов. 5. Прочистка и промывка аппарата и шлангов. 6. Забивка деревянных пробок.

А. ЗАБУТОВКА ПРИ ПОМОЩИ ПНЕВМОПОДАТЧИКА И РАСТВОРОНАГНЕТАТЕЛЯ

Нормы времени и расценки на 1 м 3

МеханизмыН. вр.Расц.
Пневмоподатчик0,290-44,11
Растворонагнетатель1,21-822

Б. ЗАБУТОВКА ВРУЧНУЮ

Нормы времени и расценки на 1 м 3

песокбетонная смесьКерамические и железобетонные кольца (длиной 1 м)1,2 1-821,5 2-281Асбестоцементные, чугунные и железобетонные трубы1,6 2-432 3-042аб№

Примечание. Разборку транспортирующего трубопровода нормировать по § Е36-2-96.

Глава 15. РАЗНЫЕ РАБОТЫ

Е36-2-143. Укладка и разборка узкоколейного пути

Указания по применению норм

Нормами на укладку пути в тоннелях предусмотрена укладка бревен (тирант) в ячейки тюбингов или непосредственно враспор в обделку и при необходимости установка подкладок и раскрепление бревен (тирант). В других подземных выработках шпалы и лежни укладываются непосредственно на подошву выработки. Между путями предусмотрена укладка плотных щитовых настилов из досок с обязательной пришивкой их к шпалам, бревнам, лежням или к продольным деревянным брускам.

Состав работ

При укладке пути

1. Укладка тирант или шпал с подгонкой их по месту установки и установкой коротышей и подкладок (в тоннелях диаметром более 6 м). 2. Укладка рельсов или звеньев по тирантам, шпалам, лежням или блокам жесткого основания. 3. Сболчивание стыков. 4. Укладка подкладок и подклинивание. 5. Забивка костылей. 6. Выверка уложенного пути. 7. Устройство настила.

При разборке пути

1. Разборка настила. 2. Разборка стыков. 3. Вытаскивание костылей. 4. Снятие рельсов или звеньев с отноской их в сторону. 5. Снятие тирант с выбивкой мальчиков. 6. Снятие шпал.

Читайте также:  Условные диаметры трубопроводов ГОСТ

Проходчик 5 разр. – 1

Крепильщик 3 » – 1

Нормы времени и расценки на 1 м пути

Укладка и разборка

в тоннелях диаметром, м

в других подземных выработках

по блокампо бревнам (тирантам)по шпалампо бревнам (тирантам)по шпалампо шпалампо лежнямПрямой и кривой радиусом св. 50 м0,2 0-270,64 0-86,40,54 0-72,90,93 1-260,64 0-86,40,31 0-41,90,27 0-36,51Кривой радиусом до 50 м0,32 0-43,21,1 1-490,89 1-20––0,67 0-90,50,59 0-79,72Прямой и кривой радиусом св. 50 м0,08 0-10,80,31 0-41,90,27 0-36,50,44 0-59,40,32 0-43,20,18 0-24,30,14 0-18,93Кривой радиусом до 50 м0,14 0-18,90,41 0-55,40,37 0-50––0,33 0-44,60,3 0-40,54абвгдеж№

Примечания: 1. Нормами и расценками настоящего параграфа предусмотрена укладка пути из рельсов Р18. При устройстве пути из рельсов Р24 Н. вр. и Расц. умножать на коэффициент 1,15 (ПР-1), из рельсов типа Р33 – на 1,45 (ПР-2).

2. Нормами и расценками предусмотрена укладка и разборка одноколейного пути. При укладке двухколейного пути к Н. вр. строк № 1-2, граф «б» – «ж» добавлять 0,27 чел.-ч к Расц. 0-36,5 (ПР-3).

3. При разборке двухколейного пути Н. вр. строк № 3, 4 граф «б» – «ж» добавлять 0,13 чел.-ч к Расц. 0-17,6 (ПР-4).

4. Укладку и разборку пути в наклонном (экскалаторном) тоннеле нормировать по строкам № 2 и 4 разновидности «б», умножая Н. вр. и Расц. на коэффициент 1,2 (ПР-5).

5. При укладке и разборке пути по ходу работ из готовых звеньев на металлических планках по блокам на 1 м пути принимать: при укладке Н. вр. – 0,16 чел.-ч, Расц. 0-21,6 (ПР-6), при разборке Н. вр. – 0,06 чел.-ч, Расц. 0-08,1 (ПР-7).

6. При наращивании временного узкоколейного пути выдвиганием телескопического звена рельсов вручную на 1 м пути принимать Н. вр. 0,19 чел.-ч, Расц. 0-25,7 (ПР-8).

Е36-2-144. Укладка и разборка стрелочных переводов узкой колеи

Состав работ

При укладке стрелочных переводов

1. Разбивка места под стрелочный перевод. 2. Раскладка шпал и деталей стрелочного перевода (при разборном типе перевода) или укладка плиты со стрелочным переводом (при переводе, приваренном к плите). 3. Сболчивание стыков и деталей стрелочного перевода. 4. Пришивка уложенных стальных частей стрелочного перевода костылями к шпалам. 5. Установка и регулировка переводного механизма. 6. Выверка и рихтовка перевода.

При разборке стрелочных переводов

1. Разболчивание стыков и деталей стрелочного перевода. 2. Снятие переводного механизма. 3. Вытаскивание костылей и снятие рельсов, шпал или плиты с переводом.

Дата добавления: 2018-11-24 ; просмотров: 260 ; ЗАКАЗАТЬ РАБОТУ

Технология забутовки трубы и пространства между трубой и футляром

24.07.2013, 14:27#1
Схема.JPG (108.8 Кб, 2501 просмотров)

24.07.2013, 14:37#2

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

1) Полагаю проще всего будет вытащить трубопровод домкратами и уже потом заливать пустой футляр.
Почему так не хотите ?
2) Трубопровод можно разрезать на две части изнутри роботом. Может уже есть такие.
3) Возможно разрезать изнутри трубопровод взрывом. Правда, конечно, это НИИ должен проектировать.
4) Можно взять окно в автодороге или ж.д. и разрезать трубу на части в котловане

Вертикальные бетонопроводы в строительстве и проходке горных выработок имеют диаметр от 150 до 250 мм. При этом трубы ближе к 150 мм, по слухам, любят забиваться бетоном.
У вас же там всего ничего места, да ещё 75 м. Вы туда свой хобот и засунуть не сможете, не то что вытащить.

24.07.2013, 14:41#3

24.07.2013, 14:46#4

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

В ГНБ не заполняют. Обычно так вода и остаётся. Во всяком случае так делает ГНБ в Питере одна фирма.

Ещё есть самовыравнивающиеся смеси типа “литой бетон” и вибрация.
Иногда горные выработки заполняются закладочным материалом через скважины с поверхности.
Может вам объединить эти решения ?
Получится дешёво.
А в скважину засунуть только самодельный вибратор. С ним может и обычный бетон растечётся.

24.07.2013, 15:26#5

Знаю, но всё же есть случаи когда заполняют это пространство, например ТМ 901-09-9.87* пишут про такое. Но как это делают – не пишут.

Сверху железная дорога, я представляю себе, что мне скажут когда я приду за ТУ к ним и расскажу про такую горную инженерную мысль.

24.07.2013, 15:30#6

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

В горных выработках закладочный бетон не уплотняют. Вроде бы. Ещё не сталкивался, слухи слышал.

Ну что, не нашли роботов режущих трубы изнутри ?
Надо трубу вынимать. Без альтернативы.

Или ещё локально разрушать трубу в местах заполнения бетоном футляра и по трубе же и подавать бетон.
Разрушать можно было бы взрывом например. Ну или домкрат с ножом туда засунуть.

Классно придумал. С вас пиво.

24.07.2013, 15:40#7

24.07.2013, 15:58#8

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Да, просто.
1) ввести внутрь сущ. трубы нестандартное изделие с гидравлическим или даже винтовым домкратом. В РД сделать комплект ПОС с эскизом устройства.
2) В середине прокола расширить домкрат с образованием щели в трубы размером не менее 200х200 мм
3) сжать домкрат
4) убрать домкрат
5) заполнить повреждённую часть трубы ц.п. раствором через специальный тампон и трубу с давлением хотя бы 0,2-0,3 МПа
6) технологическая пауза 3 часа
7) повтор цикла на 5 м ближе к краям прокола
8) и ты ды и ты пы.

Чего вам не нравится ?

24.07.2013, 16:01#9

24.07.2013, 16:03#10

24.07.2013, 16:09#11

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Чистая механика. Ёлки-палки. Вы чего, простой клиновой-резьбовой домкрат не сможете спроектировать ?

Ну вообще да. Тут сложно будет его сделать, но можно.
Или гидравликой действительно сделать.

Хорошо. Можно ведь ещё как сделать.
Засунуть в трубу 400 мм нечто. Этим нечтом истереть стенки трубы изнутри в середине + 5 м + 5 м.
Заполнить трубу водой как при испытании. Давление подать разрушающее трубу. Она лопнет в месте истирания. Но тут не проконтролируешь форму и размеры отверстия.

Наверное всё-таки с механическим домкратом проще всего.

Давайте я за денюжку эскиз в РД сделаю ?
Или бесплатно сейчас здесь родим совместными усилиями ?

в общем правильные решения:
1) Извлечь трубу 400 мм
2) Бетонирование через неё с нестандартным домкратом механическим или гидравлическим.

24.07.2013, 16:37#12

ПТО, ППР, ППРк, СВСиУ

Мы тут недавно участок водостока d800 забутовывали, по проекту песок+водичка через люк все самотеком запонялось.
У вас уклон этой трубы какой?

Согласен, что внутреннюю трубу хорошо бы вытащить, иначе возникают сложности.
Мой вариант как это сделать силами строителей:
1. Копаются 2 камеры перед и за ж/д полотном.
2. Обрезаем внутреннюю трубу с двух сторон
3. Получаем кусок 426 трубы весом, если к примеру 10ка, округленно 100 кг/п.м
0.1*75=7.5т
4. Далее с помощью бульдозера/трактора/лебедки вытаскиваем внутренюю трубу и отпиливаем по кусочкам.

24.07.2013, 17:58#13

24.07.2013, 23:58#14

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

25.07.2013, 12:17#15

Изображения

Ситуационка.JPG (195.9 Кб, 2374 просмотров)

25.07.2013, 13:22#16

ПТО, ППР, ППРк, СВСиУ

26.07.2013, 12:001 |#17

вертикальные стволы шахт

Даже под давлением полностью забутить не получиться, все равно будет зазор из-за осадки раствора. Можно попробовать саморасширяющиеся цементы http://xn--80aqae5acfe2dm8clf.xn--p1ai/, правда они подороже.
Другое дело насколько этот зазор между трубой и забутовкой критичен.

Советы по технологии: 1. Нижние концы труб обрезать и заварить.
2. Для лучшего процесса забутовки делать раствор с усадкой конуса 16-20 см (для бетона).
3. Разбить участки забутовки на 5-7 метров.
4. Сделать своеобразные “лейки” – вварить трубу (не менее 1 метра, лучше всего конусную, чтобы верх трубы был шире места вварки трубы) сверху трубы для удобства забутовки. Если есть возможность , то так их и оставить с раствором.
5. Желательно выше места “лейки” вварить трубу (диаметром 50 мм) с резьбой под сжатый воздух под наклоном в сторону направления забутовки так, чтобы раствор сдувало в сторону забутовки.
6. Сначала бутить внутреннюю трубу – пусть просаживается, затем короб.

К вопросу обоснования необходимости забутовки межтрубного пространства при реновации инженерных сетей Текст научной статьи по специальности « Строительство и архитектура»

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Орлов В.А., Хургин Р.Е., Пименов А.В.

В материале рассматриваются вопросы необходимости цементации межтрубного пространства трубопроводов при бестраншейном ремонте.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Орлов В.А., Хургин Р.Е., Пименов А.В.

Текст научной работы на тему «К вопросу обоснования необходимости забутовки межтрубного пространства при реновации инженерных сетей»

К ВОПРОСУ ОБОСНОВАНИЯ НЕОБХОДИМОСТИ ЗАБУТОВКИ МЕЖТРУБНОГО ПРОСТРАНСТВА ПРИ РЕНОВАЦИИ ИНЖЕНЕРНЫХ СЕТЕЙ

В.А. Орлов, Р.Е. Хургин, А.В. Пименов

В материале рассматриваются вопросы необходимости цементации межтрубного пространства трубопроводов при бестраншейном ремонте.

The presented information considers the problem of pipeline conservation by trenchless technology for the period of a pumping carburization.

Основной задачей проводимых исследований являлось выяснение целесообразности забутовки цементным или другим раствором межтрубного пространства при реновации ветхих водоотводящих сетей одним из распространенных методов бестраншейной технологии, т.е. путем протаскивания в них (в виде плети с бобины) труб меньшего диаметра. В случае использования в качестве протаскиваемых труб полимерных необходимо обоснование применения забутовки, что обусловлено их специфическими свойствами, которые могут влиять как на прочностные, так и гидравлические показатели работы трубопроводной системы.

Как известно, трубы из полимерных материалов обладают способностью удлинения при увеличении температуры окружающей среды и транспортируемой жидкости. При этом параметр термического (линейного) расширения материала характеризуется величиной коэффициента линейного расширения материала и не зависит от диаметра труб [1].

В пользу необходимости забутовки, например, при протягивании плетей полиэтиленовых труб, прежде всего, следует рассматривать вопросы исключения негативной реакции к сконцентрированной точечной нагрузке, т.е. опиранию трубопровода в каком-либо месте по его длине на жесткий предмет (стенку трубы), что со временем может провоцировать появление и распространение трещин. Кроме того, необходима оценка изменения гидравлических характеристик безнапорных трубопроводов как средства, обеспечивающего эффективную транспортировку сточных вод при возможном искривлении трубопровода за счет его удлинения в условиях отсутствия забутовки. Последнее обстоятельство играет значительную роль в обеспечении требуемых проектом гидравлических показателей потока.

Решение представленных выше задач производилось на примере с использованием теоретических выкладок и результатов натурных экспериментов на полиэтиленовых трубопроводах в лаборатории кафедры водоснабжения МГСУ.

Ремонт бестраншейным методом производится на трубопроводе диаметром 150 мм из чугуна путем протаскивания в него полиэтиленового трубопровода внутренним диаметром 95 м и наружным 110 мм. Длина трубопровода (от колодца до колодца) составляет S = 40 м. Перепад температур транспортируемой сточной воды в течение суток составляет At = 40 – 20 = 200C. Коэффициент линейного расширения полиэтилена составляет К = 0,00022 м/”С.

-величину линейного удлинения трубопровода ЛБ, м;

-возможную конфигурацию удлиненного полиэтиленового трубопровода при расположении в старом трубопроводе при заданных диаметрах труб;

-основные геометрические параметры возможного искажения полимерного трубопровода, т.е. количество и длину изгибов (волн), высоту прогиба над лотком и т.д.;

-последствия удлинения трубопровода с точки зрения изменения гидравлических элементов и влияния на прочностные характеристики трубопроводной системы;

-возможности исключения или сведения к минимуму последствий, связанных с линейным расширением трубопровода. Решение задачи.

Величина линейного удлинения протянутой внутрь старого трубопровода полиэтиленовой трубы начальной длины 40 м определяется по формуле (1):

ДБ = к&Б = 0,00022 • 20 • 40 = 0,176м (1) Таким образом, новая длина полиэтиленового трубопровода с учетом удлинения составит величину Р = 5 + ЛБ = 40,176 м.

Делая предположение о равномерном удлинении трубопровода, выразим величину Р как длину дуги, начальную протяженность трубопровода как хорду Ь = АВ, а хорду / = АМ, что схематично представлено на рисунке 1.

Рис. 1. Схематичное изображение исходного положения и виртуального искривления полиэтиленовой трубы в восстанавливаемом трубопроводе 1 – исходное положение полиэтиленового трубопровода; 2 – конфигурация виртуального положения полиэтиленового трубопровода с прогибом после удлинения; 3 – восстанавливаемый

Для определения максимального прогиба или гребня к = ОМ (см. рис. 1), воспользуемся формулой Гюйгенса (2) для длины дуги [2]:

Так как величина Р известна, преобразуем формулу (2) в формулу (3) для отыскания длины хорды l:

Подставляя в формулу (3) значения известных величин, определяем длину хорды l = АМ = 20,066 м. Далее из прямоугольного треугольника AMO определяем высоту прогиба h = ОМ по формуле Пифагора (4):

h = OM = VAM2 – AO2 =420,0662 – 202 = 1,626м (4)

3/2010 ВЕСТНИК _3/20™_МГСУ

Прогиб к = 1,626 м является виртуальным, так как он выходит за габариты старого трубопровода. Максимально допустимый прогиб в условиях двухтрубной конструкции может составить лишь к = 150 – 110 мм или 0,04 м. В этом случае реальная конфигурация полиэтиленового трубопровода будет иной, а именно с изгибом в виде «змейки» с большим количеством волн (прогибов), как схематично представлено на рисунке 2.

Рис. 2. Примерная конфигурация реального состояния полиэтиленовой трубы внутри восстанавливаемого трубопровода: 1 – искаженный полимерный трубопровод после удлинения; 2 -восстанавливаемый трубопровод; 3 – вершины (волны) прогибов

Для описания новой конфигурации полиэтиленового трубопровода воспользуемся формулой Гюйгенса (2) и определим геометрические параметры «искажения», т.е. реальное количество прогибов (волн) и их высоты. Выдвигая гипотезу о равномерном распределении прогибов, и, что предполагаемая высота прогибов будет одинаковой по длине трубопровода и не превысит 0,04 м, количество волн может составить 1,626 / 0,04 = 40,65 штук. Тогда, условно принимая число расчетных участков в виде равномерных элементарных длин дуги на всей протяженности трубопровода от колодца до колодца в количестве 40 шт.; длина одного деформированного участка составит 40 м /41 = 0,976 м.

Для проверки гипотезы рассмотрим один элементарный деформированный участок длиной 0,976 м (см. рис. 1). Из прямоугольного треугольника AMO длина хорды l = АМ определится по следующей зависимости (5):

l = AM = s] OM2 + AO2 =40,042 + 0,4882 = 0,4896л (5)

Используя формулу Гюйгенса (2), определим длину дуги Р:

P = 2l + 1(2l – L) = 2 • 0,4896 + (2’0,4896 ” 0,976) = 0,980266* 3 3

Таким образом, длина дуги составляет величину 0,980266 м, что больше, чем длина участка (хорды) в исходном состоянии, т.е. 0,976м. Разность этих величин соответствует удлинению и составляет 0,004266 м. Расчетная величина удлинения по формуле (1) составляет:

AS = kMS = 0,00022 • 20 • 0,976 = 0,00429м

Таким образом, разница между расчетной 0,00429 и предполагаемой 0,00466 величинами незначительна и составляет менее 0,56 %. Этим доказывается, что количество прогибов (волн) после температурного удлинения полиэтиленового трубопровода составит порядка 40 шт.

В качестве интерпретации полученных результатов следует отметить следующее: используемый для реновации полиэтиленовый трубопровод, подвергаясь линейному удлинению, приобретает конфигурацию «змейки», что отражается на прочностных

характеристиках двухтрубной системы, так как с одной стороны образуется риск появления негативных опор количестве порядка 40 точек распора, что может провоцировать напряжения, ведущие к появлению дефектов на полимерном трубопроводе, а также к повышенным напряжениям на стенку старого трубопровода. Отсюда основным выводом из теоретических предпосылок является необходимость забутовки межтрубного пространства, предотвращающего искривления полимерного трубопровода в пределах габаритов старого.

В целях доказательства необходимости забутовки с точки зрения сохранения гидравлических показателей потока были проведены серии натурных экспериментов на деформированных трубопроводах, имитирующих явления термического удлинения.

Эксперименты проводились на гидравлическом стенде, общий вид которого представлен на рисунке 3.

Рис. 3. Гидравлический стенд с трубопроводом, имеющим искривлённую конфигурацию с двумя волнами

Опыты проводились по специально разработанной методике, включающей определение ряда гидравлических показателей с помощью пьезометров и трубок Пито, установленных соответственно в точках 1 и 2 вблизи от начале и конца трубопровода, имеющего длину 10 м. Гидравлические эксперименты проводились при двух конфигурациях трубопровода: с одним и с двумя волнами и разными величинами гребней.

Исследования проводились в широком диапазоне уклонов трубопровода (0,010,03) как при неизменном, так и различном значении расхода (скорости), измеряемого с помощью ультразвукового расходомера ОКиКБГОБ СИЕ 90-2-2 с регулируемым компьютерным приводом.

Сущность экспериментов на искривленных участках трубопровода состояла в том, чтобы показать картину изменения гидравлических элементов потока жидкости и оценить их последствия для эффективной работы безнапорных водоотводящих сетей, в первую очередь, как причину нарушения их транспортирующей способности. Последнее обстоятельство весьма значимо для обеспечения требуемого гидравлического режима водоотводящих сетей малого диаметра, в частности водоотводящих выпусков из зданий и дворовой сети.

В режиме работы трубопровода с одним прогибом (волной) анализу подлежало выявление закономерностей изменения скоростного напора и наполнения от величины гребня до и после участка деформации при уклонах 0,01 и более и постоянном расходе жидкости. При этом оценке подлежала динамика изменения абсолютных значений данных величин, а также процента их прироста или спада на расчетном участке между 1 и 2 точками. Результаты экспериментов представлены на графиках рисунка 4.

Способ заполнения раствором межтрубного пространства тоннельного перехода магистрального трубопровода

Владельцы патента RU 2653277:

Изобретение относится к трубопроводному транспорту и может быть использовано при сооружении и/или реконструкции переходов магистральных трубопроводов через естественные и искусственные препятствия, построенные бестраншейными методами. В предложенном способе заполнение раствором межтрубного пространства осуществляют поэтапно. На каждом этапе раствор нагнетают в межтрубное пространство и после застывания раствора осуществляют подачу раствора последующего этапа. Заполнение межтрубного пространства осуществляют посредством двух нагнетательных трубопроводов, которые подают в межтрубное пространство с одного из концов тоннельного перехода на расстояние L. Для заполнения межтрубного пространства используют раствор, обладающий плотностью не менее 1100 кг/м 3 , вязкостью по Маршу не более 80 с и временем схватывания не менее 98 ч. Технический результат: повышение качества заполнения межтрубного пространства пластичным материалом при организации тоннельных переходов магистрального трубопровода под естественными или искусственными препятствиями, преимущественно заполненных водой, за счет создания сплошного, без образования пустот, пластичного демпфера, предотвращающего повреждение трубопровода при возможных механических или сейсмических воздействиях. 5 з.п. ф-лы, 4 ил.

Способ заполнения раствором межтрубного пространства тоннельного перехода магистрального трубопровода

Область техники, к которой относится изобретение

Изобретение относится к трубопроводному транспорту и может быть использовано при сооружении и/или реконструкции переходов магистральных трубопроводов через естественные и искусственные препятствия, построенные бестраншейными методами.

Из уровня техники известен способ изготовления системы перехода магистрального трубопровода через дорогу, заключающийся в расположении трубопровода под дорогой в защитном кожухе и обеспечении герметичности межтрубного пространства между трубопроводом и защитным кожухом с помощью торцевых уплотнений. При этом межтрубное пространство между трубопроводом и защитным кожухом заполняют жидкой пластической массой на основе синтетических высокомолекулярных соединений (патент RU 2426930 C1, дата публикации 20.08.2011, МПК F16L 7/00).

Недостатком известного способа является его узконаправленное применение на переходах небольшой длины, преимущественно под автомобильными и железными дорогами с прямым профилем прокладки. Кроме того, вышеуказанный способ не применим для реализации работ по заполнению межтрубного пространства на тоннельных переходах с возможностью одновременного вытеснения воды.

Задача, на решение которой направлено заявляемое изобретение, состоит в создание пластичного демпфера в межтрубном пространстве, предотвращающего повреждение трубопровода при возможных механических и сейсмических воздействиях.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в повышении качества заполнения межтрубного пространства пластичным материалом при организации тоннельных переходов магистрального трубопровода под естественными или искусственными препятствиями, преимущественно заполненных водой, за счет создания сплошного, без образования пустот, пластичного демпфера, предотвращающего повреждение трубопровода при возможных механических или сейсмических воздействиях.

Заявляемый технический результат достигается за счет того, способ заполнения раствором межтрубного пространства тоннельного перехода магистрального трубопровода характеризуется тем, что заполнение раствором межтрубного пространства осуществляют поэтапно, на каждом этапе раствор нагнетают в межтрубное пространство и после застывания раствора осуществляют подачу раствора последующего этапа, при этом заполнение межтрубного пространства осуществляют посредством двух нагнетательных трубопроводов, которые подают в межтрубное пространство с одного из концов тоннельного перехода на расстояние L, при этом для заполнения межтрубного пространства используют раствор, обладающий плотностью не менее 1100 кг/м 3 , вязкостью по Маршу не более 80 с и временем схватывания не менее 98 ч.

Кроме того, в частном случае реализации изобретения расстояние L составляет 0,5-0,7 длины тоннельного перехода.

Кроме того, в частном случае реализации изобретения дополнительно осуществляют устройство вспомогательного котлована для установки машины горизонтально-направленного бурения, осуществляющей подачу нагнетательных трубопроводов в межтрубное пространство.

Кроме того, в частном случае реализации изобретения нагнетательные трубопроводы снабжают роликовыми или безроликовыми опорно-направляющими кольцами, обеспечивающими беспрепятственное перемещение нагнетательных трубопроводов в межтрубном пространстве.

Кроме того, в частном случае реализации изобретения по мере заполнения межтрубного пространства нагнетательные трубопроводы выводят из межтрубного пространства.

Кроме того, в частном случае реализации изобретения в процессе подачи нагнетательных трубопроводов в межтрубное пространство обеспечивают непрерывный контроль их скорости подачи и визуальный контроль положения относительно трубопровода.

Сведения, подтверждающие реализацию изобретения

На рис. 1 изображен общий вид приемного котлована с нагнетательными трубопроводами;

на рис. 2 изображен общий вид тоннельного перехода под водным препятствием с размещенными нагнетательными трубопроводами;

на рис. 3 изображен тоннельный переход с размещенными нагнетательными трубопроводами (поперечный разрез);

на рис. 4 изображен общий вид роликового опорно-направляющего кольца (поперечный разрез).

Позиции на чертежах имеют следующие обозначения:

1 – межтрубное пространство;

1 1 – тоннельный переход;

2 – естественное препятствие;

3 – приемный (стартовый) котлован;

4 – вспомогательный котлован;

5 – машина горизонтально-направленного бурения;

6 – стена приемного (стартового) котлована;

7 – технологическое отверстие в стене приемного (стартового) котлована;

8 – нагнетательные трубопроводы;

9 – опорный стол;

10 – роликовые опоры;

11 – роликовые опорно-направляющие кольца;

13 – стальной хомут опорно-направляющего кольца;

14 – прокладочный фрикционный материал опорно-направляющего кольца;

15 – ролики опорно-направляющего кольца;

16 – держатели роликов;

17 – тоннельная обделка;

18 – насосная станция.

Способ реализуется следующим образом.

Перед проведением работ по заполнению межтрубного пространства 1 тоннельных переходов 1 1 магистральных трубопроводов через естественные или искусственные препятствия 2, построенных бестраншейными методами (микротоннелированием), проводят вспомогательные технологические работы (рис. 1). Рядом с приемными (стартовыми) котлованами 3, выполненными с обоих концов тоннельного перехода 1 1 , обустраивают вспомогательные котлованы 4 под установку машины горизонтально-направленного бурения 5 для подачи нагнетательных трубопроводов, например машины горизонтально-направленного бурения (ГНБ) и иного вспомогательного оборудования (не показано). В стене 6 приемного (стартового) котлована 3 при помощи алмазного стенореза (не показано) пропиливают технологические отверстия 7 размерами 1,0×1,0 м, через которые пропускают два нагнетательных трубопровода 8, предназначенных для подачи заполнителя, приготовленного в виде раствора, в межтрубное пространство 1. В приемном (стартовом) котловане 3 производят монтаж опорного стола 9 с роликовыми опорами 10, обеспечивающими плавную подачу нагнетательных трубопроводов 8 в межтрубное пространство 1. В предпочтительном варианте реализации изобретения способ можно использовать как при организации тоннельных переходов 1 1 , имеющих прямолинейный профиль прокладки, так и при организации тоннельных переходов 1 1 , имеющих криволинейный профиль прокладки, включающий по существу наклонные концевые части и по существу прямолинейную центральную часть. Нагнетательный трубопровод 8 представляет собой сборно-разборный трубопровод, выполненный, например, из полиэтиленовых труб.

Подачу раствора в межтрубное пространство 1 (рис. 2) осуществляют посредством не менее двух нагнетательных трубопроводов 8, прокладку которых начинают с одного из концов тоннельного перехода 1 1 , заполненного водой. Прокладку нагнетательных трубопроводов 8 осуществляют на расстояние L, предпочтительно составляющее 0,5-0,7 длины тоннельного перехода 1 1 , что обеспечивает возможность подачи раствора в требуемую зону межтрубного пространства 1 и равномерное заполнение межтрубного пространства 1 без образования пустот с одновременным вытеснением воды в направлении приемного котлована 3, находящегося на конце тоннельного перехода, с которого начинают заполнение межтрубного пространства. Подачу нагнетательных трубопроводов 8 в межтрубное пространство 1 осуществляют с помощью машины 5 горизонтально-направленного бурения и нескольких роликовых опорно-направляющих колец 11, установленных на нагнетательные трубопроводы 8 (рис. 3), или безроликовых опорно-направляющих колец (не показаны). Роликовое опорно-направляющее кольцо 11 (рис. 4) включает в себя стальной хомут 13, устанавливаемый на нагнетательный трубопровод 8 через фрикционную прокладку 14, обеспечивающую надежную фиксацию кольца 11 с трубопроводом 8, по меньшей мере четыре полиуретановых колеса (ролика) 15, установленных в держателях 16, предпочтительно под углом 90° друг к другу. При этом по меньшей мере два ролика 15 опираются на поверхность тоннельной обделки 17, и по меньшей мере один из роликов 15 опирается на поверхность трубопровода 12, что обеспечивает плавное перемещение нагнетательных трубопроводов 8 по поверхности трубопровода 12 в межтрубном пространстве 1 в заданном направлении (рис. 3). Использование не менее двух нагнетательных трубопроводов 8 позволяет равномерно заполнять межтрубное пространство 1 раствором с обеих сторон от трубопровода 12, что позволяет сохранять проектное положение трубопровода. Для исключения «всплытия» трубопровода 12 заполнение межтрубного (тоннельного) пространства 1 раствором производится поэтапно. На каждом этапе раствор нагнетается в межтрубное пространство 1, где он, застывая, обретает свои прочностные свойства, и только после этого осуществляют подачу раствора последующего этапа. Таким образом, обеспечивается сплошное равномерное заполнение межтрубного пространства 1 раствором с одновременным вытеснением воды в приемный котлован 3 с последующей откачкой ее при помощи насосной станции 18. По мере заполнения межтрубного пространства 1 раствором нагнетательные трубопроводы 8 извлекаются из межтрубного пространства 1. После этого аналогичные операции по заполнению оставшейся части межтрубного пространства 1 проводят с другого конца тоннельного перехода 1 1 . При этом прокладку нагнетательных трубопроводов 8 осуществляют на расстояние незаполненной раствором части тоннельного перехода 1.

Применение предложенного способа обеспечивает возможность сплошного равномерного заполнения межтрубного пространства тоннельного перехода 1 1 без образования пустот. Кроме того, способ заполнения межтрубного пространства 1 позволяет производить работы на эксплуатируемом переходе магистрального трубопровода без остановки перекачки продукта.

Для обеспечения непрерывного контроля движения и положения нагнетательных трубопроводов 8 при перемещении в межтрубном пространстве 1, а также оценки общего состояния межтрубного пространства 1 на нагнетательные трубопроводы 8 могут быть установлены средства видеофиксации, например web-камера (не показаны). При перемещении нагнетательных трубопроводов 8 в тоннельном переходе 1 1 изображение со средства видеофиксации в режиме реального времени поступает на средство отображения информации, размещенное в машине 5 горизонтально-направленного бурения (не показаны). На основании получаемой информации оператор может ограничить скорость подачи нагнетательных трубопроводов 8 в зависимости от фактического положения выходных отверстий нагнетательных трубопроводов 8, например, в случае обнаружения каких-либо препятствий или отклонения нагнетательных трубопроводов 8 от заданной траектории.

Для создания пластичного демпфера, предотвращающего повреждение трубопровода 12 при сейсмических воздействиях, в качестве заполнителя применяется раствор, обладающий достаточной прочностью и упругопластичными свойствами. Межтрубное пространство 1 заполняется раствором, приготовленным на основе бентонитоцементного порошка с добавлением полимеров. В результате застывания раствора образуется материал, обладающий достаточной прочностью и упругопластичными свойствами и позволяющий защитить трубопровод 12 от возможных механических и сейсмических воздействий. Для приготовления раствора применяются смесительные станции (не показано). Для обеспечения требуемых характеристик материала раствор должен удовлетворять следующим характеристикам: плотность раствора не менее 1100 кг/м 3 ; условная вязкость раствора по Маршу не более 80 с; время схватывания (потеря подвижности) не менее 98 ч.

После заполнения межтрубного пространства 1 проводят вспомогательные технологические работы: установку герметизирующих перемычек на торцах тоннельного перехода (не показано), демонтаж нагнетательных трубопроводов 8 и вспомогательного оборудования, заделку технологического отверстия 7 в стене 6 приемного (стартового) котлована 3 и засыпку вспомогательного котлована 4.

Таким образом, заявляемый способ обеспечивает сплошное, без образования пустот, заполнение межтрубного пространства пластичным материалом путем подачи раствора по нагнетательным трубопроводам с возможностью одновременного вытеснения воды (в случае необходимости) на переходах магистральных трубопроводов через естественные и искусственные препятствия, построенных бестраншейными методами (микротоннелирование).

1. Способ заполнения раствором межтрубного пространства тоннельного перехода магистрального трубопровода, характеризующийся тем, что заполнение раствором межтрубного пространства осуществляют поэтапно, на каждом этапе раствор нагнетают в межтрубное пространство и после застывания раствора осуществляют подачу раствора последующего этапа, при этом заполнение межтрубного пространства осуществляют посредством двух нагнетательных трубопроводов, которые подают в межтрубное пространство с одного из концов тоннельного перехода на расстояние L, при этом для заполнения межтрубного пространства используют раствор, обладающий плотностью не менее 1100 кг/м 3 , вязкостью по Маршу не более 80 с и временем схватывания не менее 98 ч.

2. Способ по п. 1, отличающийся тем, что расстояние L составляет 0,5-0,7 длины тоннельного перехода.

3. Способ по п. 1, отличающийся тем, что дополнительно осуществляют устройство вспомогательного котлована для установки машины горизонтально-направленного бурения, осуществляющей подачу нагнетательных трубопроводов в межтрубное пространство.

4. Способ по п. 1, отличающийся тем, что нагнетательные трубопроводы снабжают роликовыми или безроликовыми опорно-направляющими кольцами, обеспечивающими беспрепятственное перемещение нагнетательных трубопроводов в межтрубном пространстве.

5. Способ по п. 1, отличающийся тем, что по мере заполнения межтрубного пространства нагнетательные трубопроводы выводят из межтрубного пространства.

6. Способ по п. 1, отличающийся тем, что в процессе подачи нагнетательных трубопроводов в межтрубное пространство обеспечивают непрерывный контроль их скорости подачи и визуальный контроль положения относительно трубопровод.

Устройство трубопроводов способом продавливания

Продавливанием называют способ бестраншейной прокладки инженерных сетей, при котором производится последовательное вдавливание в грунт соединенных между собой звеньев труб с одновременной непрерывной или цикличной разработкой грунта внутри головного звена трубопровода и удалением его через прокладываемый трубопровод, Разработка грунта впереди трубы не допускается.

Продавливанием ведут не только прокладку стальных сварных трубопроводов, но и строительство железобетонных коллекторов и туннелей различного назначения, состоящих из элементов различ­ной формы, соединяемых в торец без наружных выступающих частей. Продавливанием прокладывают в грунтах I–III категории стальные трубопроводы диаметром 400-2000 мм и железобетонные футляры диаметром 1000-4000 мм, внутри которых затем прокла­дывают рабочие трубопроводы. Средняя длина проходок 70-80 м.

В качестве продавливающих устройств применяют насосно-домкратные установки, состоящие из двух, четырех, восьми и более домкратов мощностью 50-300 т каждый с ходом штоков 1100-2100 мм. Количество домкратов в установке зависит от диаметра и протяженности прокладываемого трубопровода. Так, для продав­ливания труб диаметром 400-1000 мм применяют установки с двумя гидравлическими домкратами рис. 4.5 (такие же установки применяют и для прокола). Установки из четырех, восьми и более домкратов используют для продавливания трубопроводов диаме­тром свыше 1000 мм.

Рисунок 4.4 – Схемы установок для прокладки труб методом продавливания:

а – продавливание с ручной разработкой грунта; б – продавливание установкой с механизированной разработкой грунта; 1 – насосная станция;

2 – трубопровод; 3 – рабочий котлован; 4 – водоотводный поток;

5 – трубопровод ( футляр ); 6 – лобовая обделка ( нож ); 7 – приемный котлован; 8 – приямок для сварки труб; 9 – направляющая рама;

10 – нажимной патрубок; 11 – нажимная заглушка; 12 – гидродомкраты;

13 – башмак; 14 – упорная стенка; 15, 18 – канаты; 16 – ролики; 17 – ковш;

19 – барабан – накопитель; 20 – уравнитель; 21 – нажимные штанги;

22 – траверса; 23 – поворотные фланцы; 24 – лебедка; 25 – шпалы направляющей рамы

Домкраты закрепляют в специальном станке, обеспечивающем правильность (без перекоса) их установки и равномерную передачу усилий вдавливания торцу трубопровода. Станок состоит из сварной стальной рамы и деревянных вкладышей, в гнездах которых устанавливаются домкраты так, чтобы их продольные оси и ось трубопровода были взаимно параллельны. Кроме того, оси домкратов должны быть строго перпендикулярны торцам звеньев трубопровода и задней упорной стенке.

Рисунок 4.5 – Продавливание стальной трубы установкой

с двумя гидравлическими домкратами

Усилия от домкратов передаются прокладываемой трубе через задний ее торец с помощью стальной нажимной рамы или стального нажимного кольца, равномерно распределяющих давление по периметру торца трубопровода. Передачу вдавливающих усилий стальному трубопроводу можно производить также через хомуты, закрепляемые на его боковой поверхности. Для передачи усилий от домкратов на торец звена трубы после продавливания трубопровода в грунт на длину хода штоков домкратов применяют нажимные патрубки. При прокладке стальных трубопроводов наиболее часто используют нажимные патрубки, изготовленные из отрезков труб того же диаметра что и диаметр продавливаемой трубы. Для передачи усилий вдавливания железобетонным трубам применяют трубчатые нажимные патрубки, изготовленные из толстостенных труб диаметром 150-300 мм. Длина нажимных патрубков должна быть равна или кратна длине хода штоков домкратов.

Так, для продавливания звеньев труб длиной 6 м домкратами с ходом штоков 1,15 м необходимо иметь набор нажимных патрубков длиной 1,0; 2,0 и 3,0 м соответственно.

Перед началом работ по продавливанию отрывают рабочий котлован необходимых размеров, из которого ведется прокладка трубопровода. При разработке котлована и во время проходки обеспечивается водопонижение или водоотлив грунтовых вод. В заднем торце котлована сооружают упорную стенку, которая восп­ринимает реактивные усилия домкратов через опорную подушку и передает их грунту.

На дне рабочего котлована на деревянном или железобетонном основании монтируют домкратную установку. Монтаж установки и вспомогательных устройств, а также дальнейшее обслуживание процесса продавливания ведется с помощью автокрана. Насосная установка, приводящая в действие домкраты, располагается, как правило, на поверхности земли поблизости от котлована. Рядом с домкратной установкой по ее оси на дне котлована монтируют направляющие устройства в виде двух рельсов, уголков или швеллеров, уложенных на шпалы параллельно оси прокладывае­мого трубопровода рис. 4.6.

Рисунок 4.6 – Котлован с установкой для продавливания

Направляющие устройства предназначены для точного направления движения звеньев трубопровода, нажимных рам, колец и патрубков при вдавливании. Вдавливаемая труба проходит в забой через отверстие в креплении передней стенки котлована. Размеры отверстия должны быть несколько больше внешних размеров стального клиновидного ножа, которым оснащен передний торец головного звена трубопровода. Во избежание отклонения трубо­провода от заданного направления при прокладке перед отверстием иногда устанавливают вертикальную направляющую раму.

Головное звено трубопровода опускают в котлован и устанав­ливают на направляющие перед домкратами с помощью крана.

Положение головного звена выверяют геодезическими приборами и начинают продавливание в такой последовательности. Сначала головное звено вдавливают в грунт на длину хода штоков домкратов. Затем, меняя переключателем направление движения масла в системе высокого давления, возвращают штоки в исходное положение. В промежуток между домкратами и торцом трубы укладывают на направляющие устройства нажимной патрубок, длина которого равна ходу штоков домкратов, и повторяют цикл вдавливания. После второго цикла домкратов ранее установленный патрубок заменяют другим, длина которого соответствует уже двойному ходу штоков домкратов, и т. д. Процесс смены нажимных патрубков повторяется до тех пор, пока все звено не будет вдавлено в грунт. Нажимные патрубки удаляют, и в освободившееся пространство перед домкратами устанавливают на направляющие очередное звено трубопровода. Звено либо сваривают с предыду­щим (при прокладке стальных трубопроводов), либо стыкуют в паз (при прокладке железобетонных трубопроводов).

Грунт, входящий в трубу через ее открытый конец, удаляют непрерывно или периодически через внутреннее пространство трубы в рабочий котлован ручной разработкой лопатами с короткими черенками (рис. 4.7) и механизированным способом (рис. 4.8).

Удаление грунта из труб диаметром 500-800 мм осуществ­ляется преимущественно гидравлическим способом. Для удаления грунта из трубопроводов большего диаметра используют вагонетки, бадьи, челноки, перемещаемые с помощью канатов и лебедок, самоходные электрокары и тележки со съемными или саморазгру­жающимися кузовами, ленточные и скребковые конвейеры перемен­ной длины, раздвигаемые по мере увеличения протяженности проходки, и т. д.

Рисунок 4.7 – Ручная разработка грунта

Рисунок 4.8 – Механизированная разработка грунта

Транспортные средства загружают вручную (при диаметре труб свыше 1000-1200 мм) или малогабаритными породопогру­зочными машинами. Плотные грунты перед погрузкой измельчают с помощью режущих решеток, помещенных сразу же за ножевым кольцом, разрабатывают вручную или малогабаритными автомати­ческими гидроэкскаваторами.

Несвязные водонасыщенные грунты поступают на транспор­тирующие устройства самостоятельно (без применения ручного труда и машин) через люки стальных диафрагм, отделяющие ножевую секцию от остальных секций трубопровода. Количество поступающего грунта регулируется специальными затворами.

В рабочем котловане грунт с горизонтальных транспортирую­щих средств перегружается в приемные устройства средств верти­кального транспорта – элеваторов различных типов, ковшовых или клетьевых подъемников. В некоторых случаях при транспортировке грунта в тележках и электрокарах их съемные кузова прикрепляют к траверсам, подвешенным на крюках кранов, и подают наверх через окно в нажимном патрубке.

Для разработки грунта и удаления его из трубопровода очень часто (особенно в неустойчивых и водонасыщенных грунтах) применяют метод гидротранспорта грунта, при котором полностью исключается ручной труд. Сущность этого способа заключается в следующем. Размыв поступающего в трубу грунта производится в камере направленными струями воды, выходящими под давлением 6-10 кгс/см 2 (0,59-0,98 МПа) из насадок, расположенных по периметру головного звена. Камера отделена от остальной части головного звена стальной диафрагмой с герметически закрываемой дверцей. Пульпа (размытый грунт) гидроэлеватором по пульповоду подается в рабочий котлован, а оттуда в отвал.

Возможно также вибровакуумное продавливание, заключаю­щееся в том, что из стального цилиндра с одним днищем, являюще­гося основным рабочим органом, откачивается воздух, вследствие чего атмосферное давление вдавливает цилиндр в грунт. Благодаря установленному на цилиндре вибратору скорость проходки значительно увеличивается. Проходка этим методом особенно целесообразна в песчаных грунтах.

Производительность установок для проходок способом про­давливания зависит от физико-механических свойств грунта, диа­метра и протяженности трубопровода, мощности домкратов, скорости и длины хода их штоков, а также от способа разработки и удаления грунта и составляет в среднем 0,5-1,5 м/ч, а длины проходок 20-60 м.

Основным достоинством способа продавливания является возможность прокладки стальных и железобетонных трубопроводов больших диаметров в грунтах до III категории включительно. К недостаткам следует отнести небольшую скорость проходки и возможность повреждения изоляции при прокладке изолированных рабочих трубопроводов.

Не нашли то, что искали? Воспользуйтесь поиском:

Добавить комментарий
×
×