Требования к материалу для гильз цилиндров

MOTORZONA

Назначение гильз, требования к гильзам цилиндров.

Стенки цилиндра двигателя образуют совместно с поршнем, кольцами и поверхностью камеры сгорания пространство переменного объема, в котором совершаются все рабочие процессы двигателя внутреннего сгорания. Стенка цилиндра должна быть тщательно обработана и образовывает с поршневыми кольцами пару скольжения. Цилиндры и гильзы цилиндров нагружаются силами давления газов, боковой нагрузкой от поршня и температурной нагрузкой. Переменная по величине и направлению боковая нагрузка вызывает изгиб и вибрацию цилиндра и ослабляет его крепление к картеру. Стенки цилиндра под действием возникающих при движении поршня сил трения подвергаются, кроме того, износу. Гильзы цилиндров должны быть прочными, жесткими, износостойкими, обеспечивать, возможно, меньшие потери на трение поршня о поверхность цилиндра. Внешняя и внутренняя поверхность гильз должна обладать антикоррозионной устойчивостью. Конструкция гильз должна также обеспечивать надежность уплотнений в местах стыков гильз с головкой и блоком цилиндров. Гильзы цилиндров могут, являются как самостоятельной конструкционной единицей двигателя («мокрые» и гильзы двигателей воздушного охлаждения), так и являться элементом ремонтной технологии, предусмотренной заводом изготовителем (например: «сухие» гильзы для двигателей, где цилиндры выполнены заодно с блок-картером). В автомобильных и тракторных двигателях наибольшее распространение получили чугунные гильзы.

По конструкции гильзы цилиндра современных автомобильных и тракторных двигателей можно разделить на три основные группы:

  1. «Мокрые» гильзы цилиндров.
  2. «Сухие» гильзы цилиндров.
  3. Гильзы для двигателей с воздушным охлаждением.

«Мокрые» гильзы. Конструкцией двигателя с водяным охлаждением предусмотрена полость в картере двигателя, так называемая «рубашка охлаждения». Гильза, соприкасающаяся свой поверхностью с охлаждающей жидкостью находящейся в «рубашке охлаждения» называется «Мокрой». «Мокрые» гильзы цилиндров обеспечивают лучший отвод тепла, но картер двигателя с такими гильзами обладает меньшей жесткостью. Большое распространение эти гильзы получили на грузовых и тракторных двигателях в силу своей высокой ремонтопригодности. Как правило, выпускаемые производителями «мокрые» гильзы не требуют перед установкой, какой либо доработки. Изношенные «мокрые» гильзы в большинстве случаев не ремонтируют, а заменяют новыми без снятия двигателя с шасси. Для предотвращения прорыва газов в охлаждающую жидкость и просачивания этой жидкости в цилиндр и картер двигателя «мокрые» гильзы комплектуются уплотнительными прокладками. Внутренняя поверхность гильз тщательно обрабатывается (хонингуется)для того что бы обеспечить наличие требуемой масляной пленки для смазки поршневых колец. Двигатели с «мокрыми» гильзами устанавливаются почти на все современные коммерческие автомобили.

«Сухие» гильзы. Гильзы, не имеющие соприкосновения с охлаждающей жидкостью, называются «сухими» гильзами. Конструкцией некоторых двигателей предусмотрена заливка при изготовлении в блок картер гильз изготовленных из износостойкого материала, создавая тем самым оптимальные условия для работы цилиндропоршневой группы. Например, некоторые модели двигателей HONDA, Land Rover, Volkswagen, AUDI, VOLVO и многих других производителей имеют алюминиевый блок цилиндров (для уменьшения веса силового агрегата) и залитые в него «сухие» гильзы (для увеличения ресурса и повышения ремонтопригодности). Но самое широкое распространение «сухие» гильзы получили в сфере капитального ремонта двигателя. Не «загильзованный» блок цилиндров современного двигателя имеет несколько, предусмотренных технологией, расточек с последующей установкой в него ремонтных поршней. Установка «сухих» гильз позволяет не менять блок двигателя даже после износа цилиндра расточенного в последний ремонтный размер. Производители гильз выпускают так называемые, заготовки гильз, то есть гильзы имеющие запас по длине и внешнему диаметру, которые после токарной обработки запрессовываются с натягом в блок цилиндров. Такие гильзы как правило не имеют обработки внутренней поверхности. Они растачиваются и хонингуются только после установки гильзы в блок цилиндров. Поверхность блока цилиндров под установку тоже повергается тщательной обработке: расточке и в некоторых случаях хонингованию. Гильза с упором устанавливается в блок под давлением, с натягом (в среднем 0,03-0,04 мм), для гильз, не имеющих упора натяг больше. Наружная поверхность «сухих» ремонтных гильз, как правило, подвергается шлифовке, для увеличения плотности прилегания к блоку цилиндров. Гильзы могут фиксироваться при установке верхним буртом, нижним буртом или вообще могут устанавливаться без упора. Некоторые японские производители, например ISUZU, изготавливают двигатели с тонкостенными стальными гильзами, имеющими покрытие из пористого хрома железом. Такие гильзы не подвергаются механической обработке и устанавливаются в блок цилиндров без натяга, с небольшим усилием и удерживаются в блоке за счет прижатия широкого бурта гильзы головкой блока. Блок картер с сухими гильзами имеет повышенную жесткость по сравнению с блоком, с установленными «мокрыми» гильзами.

Гильзы цилиндров для двигателей с воздушным охлаждением. В двигателях воздушного охлаждения конструкция оребрения и необходимость создания охлаждающих воздушных потоков не позволяют применять блок-картерный тип отливки. В этих двигателях применяют отдельно отлитые цилиндры с воздушными ребрами, расположенными чаще всего перпендикулярно оси цилиндра. Эти гильзы цилиндра крепятся к верхней части картера короткими шпильками через опорный фланец (несущие цилиндры) или при помощи анкерных (несущих) шпилек. Гильзы цилиндров двигателей воздушного охлаждения изготавливают как из одного (монометаллические), так и из двух (биметаллические) металлов. Монометаллические цилиндры делают из чугуна, реже из стали или легких сплавов. Из биметаллических цилиндров получили распространение чугунные или стальные цилиндры с залитыми (или навитыми) алюминиевыми ребрами. Широкое распространение двигатели с воздушным охлаждением получили среди производителей тяжелой строительной техники. Ярким примером является всемирно известный производитель индустриальных двигателей немецкая фирма DEUTZ.

Условия работы и основные требования, предъявляемые к материалу гильз блока цилиндров Текст научной статьи по специальности « Технологии материалов»

Похожие темы научных работ по технологиям материалов , автор научной работы — A. H. Крутилиh, M. И. Курбатов, М. И. Курбатова

The conditions of work and main requirements to material of the cylinders block liners are given.

Текст научной работы на тему «Условия работы и основные требования, предъявляемые к материалу гильз блока цилиндров»

ДГТТгГ: rr ГСГЗГШГРГТГС

The conditions of work and main requirements to material of the cylinders block liners are given.

А. Н. КРУТИЛИН, М. И. КУРБАТОВ, М. И КУРБАТОВА, БИТУ

УСЛОВИЯ РАБОТЫ И ОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К МАТЕРИАЛУ ГИЛЬЗ БЛОКА ЦИЛИНДРОВ

Технический прогресс в области двигателест-роения, направленный на увеличение удельной мощности современных двигателей, связан с ростом давлений и тепловой напряженности деталей цилиндропоршневой группы, что неизбежно приводит к ухудшению условий трения и интенсификации износа гильз цилиндров и поршневых колец.

Несмотря на постоянное совершенствование конструкции двигателей, технологии их производства и ремонта, вопросы повышения износостойкости деталей цилиндропоршневой группы продолжают привлекать исследователей и практиков. До сих пор в технической литературе не существует общепринятого критерия износостойкости для различных процессов изнашивания. Нет единой точки зрения и на особенности износа пары трения гильза цилиндров – поршневое кольцо. При трении протекают одновременно различные процессы разрушения. Различают хрупкий, вязкий, полидеформационный или усталостный характер разрушения. Первые два вида разрушения имеют место при однократном контактировании микровыступов, остальные — после определенного числа циклов. Если напряжения в очаге касания выше предела текучести, но ниже предела прочности, то разрушение носит полидеформационный характер, а при напряжениях ниже предела текучести — усталостный. Уменьшение величины износа возможно при снижении уровня хрупкого и вязкого разрушения.

Достижения в области физики твердого тела, физико-химической механики, металловедения и технологии производства позволяют с новых позиций объяснить механизмы повреждений трущихся поверхностей и выбрать эффективные способы борьбы с износом.

Сопряжение гильза цилиндра — поршневое кольцо работает при нестационарных тепловых, нагрузочных, скоростных режимах, масляном

голодании, воздействии абразивной и газовых сред, возникновении микросхватывания с различной интенсивностью разрушения. Этому сопутствуют необратимые процессы усталости и охрупчивания, постоянно происходящие в тонких поверхностных слоях. Условия трения по высоте цилиндра различны. Наиболее неблагоприятные условия трения в цилиндре двигателя внутреннего сгорания возникают при реверсировании в зонах минимальных скоростей движения поршня и особенно у камеры сгорания, где температура поверхностей трения цилиндра и колец достигает 350°С, максимальное давление — 6—16 МПа.

Как показывают исследования, около мертвых точек всегда наблюдается почти полное разрушение масляной пленки. В области повышенных скоростей движения поршня несущая способность пленки возрастает и может достигнуть величины, присущей режиму трения в случае полужидкостной смазки.

В процессе эксплуатации двигателей на трущихся поверхностях протекают сложные физико-химические процессы, приводящие к износу и разрушению их поверхностного слоя, т.е. к изменению размеров и геометрии сопряженных деталей. Характер протекания этих процессов, в свою очередь, определяет мощностные и экономические показатели работы двигателя.

Наибольшее влияние из внешних факторов на интенсивное протекание изнашивания за счет микросхватывания оказывают абразивное воздействие твердых частиц и температура в зоне фрикционного контакта. В зависимости от свойств материалов и условий трения этот вид изнашивания может протекать на атомарном, ионном, субмикро- и макроуровнях с различной интенсивностью, достигая в экстремальном случае катастрофической формы – задира.

В зависимости от режимов трения в цилиндре двигателя, свойств материалов втулки, поршня и поршневых колец можно наблюдать различную

интенсивность массопереноса с одной поверхности трения на другую и разные размеры разрушения сопряженных поверхностей, реализуемые в макро-, микро- и субмикрообъемах.

Абразивное изнашивание деталей цилиндропор-шневой группы вызвано в основном частицами минерального происхождения, проникающими вместе с воздухом в цилиндр. Максимальный износ находится в верхней части гильзы, сильно изнашиваются верхнее компрессионное кольцо и канавка под него в поршне. Абразивное изнашивание протекает в процессе микрорезания и царапания поверхности детали твердыми абразивными частицами.

Коррозионно-механический износ гильз цилиндров состоит во взаимодействии материала поверхностей, трения с газообразными и жидкими продуктами сгорания топлива, окисления масла и воды. Условия для его развития создаются при холодных запусках двигателя. Продукты сгорания топлива и смазки, взаимодействуя с конденсатом, образуют разбавленные растворы органических и неорганических кислот. В результате на внутренней поверхности гильз цилиндров развиваются процессы электрохимической коррозии.

Коррозионно-механический износ состоит обычно из двух фаз: фазы воздействия агрессивного вещества на металл и образования оксидной пленки, и фазы удаления этой пленки с поверхности трения. Считается, что для гильз цилиндров двигателей основное значение имеет электрохимическая коррозия, являющаяся результатом взаимодействия с металлом слабых кислот, растворенных в воде и сконденсировавшихся на стенках цилиндров. Практика показывает, что в настоящее время доля коррозионно-механическо-го изнашивания резко уменьшилась. Природа коррозионно-механического износа гильзы изучена еще недостаточно и не все процессы объяснимы с точки зрения износа. Нельзя рассматривать только коррозионно-механический износ гильзы без учета остальных факторов.

Анализ причин преждевременного износа гильз цилиндров показывает, что нарушение работоспособности обусловлено также кавитационными процессами и образованием трещин на зеркале гильзы в результате термоциклической усталости ее материала.

Кавитационное разрушение гильз цилиндров возникает в системе охлаждения двигателя под воздействием высокочастотных вибраций цилиндров, возмущаемых ударами поршня о стенки цилиндров в верхней мертвой точке. Вибрация вызывает в водяной рубашке образование и схло-пывание кавитационных пузырей, что обусловливает кавитационную эрозию. Механизм разрушения металла при кавитации очень сложен и зависит от многих факторов, например, интенсивности и частоты вибрации поверхности, давления в среде и свойств материала разрушаемой поверхности.

Читайте также:  Токарно-винторезный станок модели 1А62

Разрушение стенок и гильз цилиндров под воздействием кавитационной эрозии существенно снижает срок службы и надежность двигателей внутреннего сгорания. Практика эксплуатации двигателей показывает, что до 50% гильз, находящихся в работе, имеют кавитационные разрушения.

Кроме различных видов износа и кавитационной эрозии, значительное влияние на долговечность гильз цилиндров оказывают частые теплосмены, которые неизбежно происходят при эксплуатации двигателя. В результате в процессе работы происходит изменение макро- и микроструктуры сплава.

Рассмотренные выше виды износа цилиндров относятся к режимам эксплуатации двигателей. Молекулярно-механический износ и микросхватывания поверхностей кольца и цилиндра наблюдаются при недостаточной смазке верхней зоны цилиндра. Коррозионно-механический износ наблюдается при нарушении теплового режима двигателя. Абразивный износ является следствием плохой очистки воздуха, т.е. в первую очередь недостаточного уплотнения картера.

Во всех случаях эксплуатации и при любом доминирующем виде износа гильза изнашивается неравномерно по длине образующей цилиндра, имеет место ярко выраженный максимум в верхней части, в зоне между верхними мертвыми точками первого и второго компрессионного колец. Возникновение неравномерного износа цилиндра вызывает повышение износа всех деталей цилиндропоршневой группы и резкое уменьшение надежности их работы.

За рубежом в основном применяют гильзы без термической обработки только для двигателей, работающих в условиях большой запыленности, используют закаленные гильзы. Гильзы имеют твердость НЯС 50-55 при объемной закалке и НЯУ 800 при поверхностной. Большое внимание уделяют распределению остаточных напряжений в гильзах цилиндров. При литье в песчано-глинис-тую форму остаточные напряжения не превышают 50 МПа, поэтому они не могут оказать существенного влияния на изменение геометрии в процессе эксплуатации и на возможный процесс трещино-образования. В большинстве заготовок гильз, полученных центробежным способом литья, остаточные напряжения также малы

120МПа, т.е. не превышают предела прочности материала (180-220 МПа). Суммарные напряжения, возникающие при последовательном снятии растягивающих слоев у одной из поверхностей посредством механической обработки, а также появление дополнительных напряжений от зажима заготовки на станке и усилия резания, в результате перераспределения напряжений могут превысить предел прочности материала. В ряде случаев это приводит к разрушению гильзы. Склонность к трещинообразованию отдельных гильз центробежного литья связана с наличием в них неблагоприятного распределения остаточных напряжений.

Таким образом, исходя из реальных условий эксплуатации двигателей внутреннего сгорания, требования к гильзам цилиндров можно сформулировать следующим образом:

• высокая механическая, статическая и усталостная прочность;

• кавитационная и термоциклическая стойкость;

• высокая износостойкость и низкий коэффициент трения;

• стабильность свойств в процессе эксплуатации;

• хорошая обрабатываемость резанием;

• технологичность получения заготовок.

В практике мирового двигателестроения для гильз цилиндров в качестве материалов применяются сырые, легированные и высокопрочные чугу-ны. Чугун лучше других материалов удовлетворяет требованиям, предъявляемым к деталям цилиндро-поршневой группы двигателей внутреннего сгорания, работающих в условиях граничной смазки.

Большинство производителей обеспечивают получение во втулках средне- и мелкопластинчатых включений графита завихренной формы, структурно свободный цементит вообще не допускают вследствие возможного выкрашивания его в зоне скольжения. Действуя как абразив, он может вызвать задиры и повышенный износ. Содержание феррита не более 5%, так как он способен пластически деформироваться, наклёпываться и схватываться, приводя к неравномерному и интенсивному износу.

Содержание фосфора выбирают с учетом его влияния как на образование сетки фосфидной эвтектики, повышающей износостойкость, так и воздействием его на прочность, которая с увеличением содержания фосфора повышается.

Основными элементами, с помощью которых регулируют структуру металлической основы, а также количество, размер и форму графита, являются углерод, кремний и марганец. Содержание этих элементов выбирается с учетом толщины стенки гильзы. Применительно к деталям, работающим на износ, установлено, что увеличение общего содержания углерода повышает износостойкость, улучшает антизадирные свойства вследствие увеличения количества графита. Однако содержание углерода рекомендуется ограничивать, так как его чрезмерное содержание может привести к укрупнению графитных включений, которые легко выкрашиваются в процессе эксплуатации, сильно разрыхляя металлическую основу чугуна.

Марганец предупреждает выделение феррита, способствует отбелу и в известных пределах весьма благоприятно влияет на износостойкость деталей цилиндропоршневой группы, его содержание рекомендуют поддерживать в пределах 0,4—0,7%.

шгггг:гг п^штптп / то

Присадкой повышенных количеств марганца можно значительно повысить прочность чугуна при малой степени измельчения графита.

В качестве легирующих элементов чаще всего применяют различные сочетания хрома, никеля, меди, ванадия, титана, молибдена, сурьмы и некоторых других элементов.

Анализ микроструктуры металлической матрицы чугунов, используемых для изготовления гильз цилиндров, свидетельствует о том, что практически все они перлитного класса. Закаленные гильзы используют только для двигателей, работающих в условиях большой запыленности. Термическая обработка позволяет значительно ослабить отрицательное действие таких факторов, как колебание химического состава, влияние температуры перегрева и заливки металла, некачественные эксплуатационные материалы, фильтры и т.п. Однако в процессе поверхностной термообработки, хотя и в меньшей степени, а объемной в большей наблюдается значительное коробление гильзы.

Бейнитный чугун имеет более высокую стойкость к абразивному изнашиванию и задиру, чем более мягкие марки чугуна, а это позволяет удвоить срок службы гильз. Мартенситная закалка еще более увеличила бы износостойкость (срок службы увеличивается в 5 раз), но полученная таким образом структура имеет небольшую стойкость к интенсивному задиру и ей необходим отпуск между 300 и 500°С для снижения твердости до 250-350 НВ.

Промышленное использование легирования ограничивается непостоянством получаемых результатов, что подтверждается практикой работы заводов при производстве заготовок для гильз цилиндров тракторных и автомобильных двигателей. Накопленный опыт применения чугунов для гильз цилиндров двигателей позволяет сделать вывод о том, что каждый из этих сплавов обеспечивает надежную работу гильз в течение 4,5-5,5 тыс. ч при условии равномерного распределения структурных составляющих, вредных примесей и неметаллических включений на рабочих поверхностях, а также применение совершенных фильтрующих устройств двигателей и высококачественных горючих и смазочных материалов. Равномерность свойств по сечению гильзы не является оптимальной. С эксплуатационной точки зрения можно считать, что оптимальной структурой на внутренней поверхности гильзы является бейнитная или мартенситная, а с наружной стороны — ферритная как наиболее теплопроводная структурная составляющая.

Получение высоких эксплуатационных свойств гильз цилиндров может быть достигнуто только за счет правильно выбранного технологического процесса и строгой оптимизации химического состава и структуры.

Ультрапрочные материалы снизят возможность деформации гильз цилиндров

В конце июня компания Federal-Mogul Powertrain провела Media Technology Day, представив профессиональному медиасообществу новейшие технологии компонентов двигателей внутреннего сгорания. Сегодня мы поговорим о гильзах цилиндров. Передовая технология литья деталей из чугуна уменьшает расход масла и трение в цилиндрах, а также позволяет повысить давление в камере сгорания. Вероятность деформации гильз при этом существенно снижается.

Компания Federal-Mogul Powertrain первой запустила серийное производство гильз цилиндров из ультрапрочного чугуна. Что значит ультрапрочного? А вот что. Эти детали, созданные из специального чугуна с вермикулярным графитом. Код материала по стандарту предприятия GOE330.

Собственно говоря, вермикулярный графит в чугуне не новость. Извините за банальность, но чугун – это сплав железа с углеродом. А графит представляет собой наиболее устойчивую кристаллическую модификацию чистого углерода, весьма желательного компонента в специальных марках чугуна. Но важна не только химическая чистота графита, но форма его включений в сплаве. Так вот, вермикулярный графит (от лат. vermiculus – червячок) в пространстве имеет форму изогнутых лепестков. И во многом благодаря им металлурги могут «программировать» механические свойства будущей отливки – прочность, упругость, термостойкость и проч.

Компания Federal-Mogul Powertrain поставляет гильзы цилиндров диаметром от 100 до 190 мм для производства двигателей, предназначенных для установки на внедорожные машины, суда и генераторные установки

В чем же заслуга Federal-Mogul Powertrain? А в том, что она это «программирование» освоила в совершенстве. Разумеется, в компании есть металловедческие лаборатории, оборудование и светлые головы. Но теория теорией, а ее эффективного внедрения добиваются далеко не все производители компонентов ДВС. Здесь же практические результаты применения материала GOE330 впечатляют.

Судите сами: в сравнении с широко используемым сегодня чугуном, новые гильзы показали при максимальном боковом давлении поршней снижение деформации на 27%. К слову, из этого материала производятся гильзы диаметром от 100 до 190 мм. А такие гильзы весьма капризны при изготовлении. Теперь это в прошлом. Уже не капризничают. Что касается эксплуатационных преимуществ новых гильз, предоставим слово производителям.

Модуль упругости GOE330 более чем на 15% выше, чем у высокопрочного чугуна, применяемого в настоящее время для изготовления гильз. А усталостная прочность выше примерно на треть

«Деформация под нагрузкой ухудшает уплотнение между гильзой и поршневыми кольцами, что приводит к повышенному расходу масла и износу, – говорит Жан-Мария Оливетти (Gian Maria Olivetti), директор по технологиям Federal-Mogul Powertrain. – Если повысить растяжение поршневых колец для компенсации, то одновременно с этим повысится трение и расход топлива».

Жан-Мария Оливетти (Gian Maria Olivetti), директор по технологиям Federal-Mogul Powertrain

«Разрабатывая новые материалы для гильз цилиндров, отличающиеся повышенной прочностью и твердостью, мы даем возможность нашим клиентам, производителям тяжелой техники, повысить максимальное давление в цилиндрах и сделать двигатели более эффективными, – продолжает г-н Оливетти. – Кроме того, появляется возможность закладывать в конструкцию более тонкие гильзы, что позволяет уменьшить размеры двигателей».

Продолжим изучение механических свойств нового материала. Модуль упругости материала GOE330 более чем на 15% выше, чем у применяемого в настоящее время высокопрочного чугуна. А усталостная прочность увеличилась примерно на треть. Но разработки на этом не заканчиваются: Federal-Mogul Powertrain планирует продолжить исследования в области повышения прочности и твердости материала.

Специалисты компании накопили огромный опыт разработки материалов для гильз цилиндров. Кроме того, они разработали методику и программное обеспечение для точного моделирования поведения гильз в тех или иных условиях, включая экстремальные. В руках исследователей современный инструмент для анализа информации и последующей оптимизации гильз под перспективные варианты применения с различными термическими и механическими нагрузками.

Одновременно с компьютерным моделированием проводятся испытания на стенде Hydropulser – это собственная разработка компании. С его помощью можно воспроизвести нагрузку от бокового усилия поршней и оценить усталостную прочность гильз. И лишь потом изделия сдают главный экзамен – тест на реальном двигателе.

Детали, созданные из специального чугуна GOE330 с вермикулярным графитом, при максимальном боковом давлении поршней показали снижение деформации на 27% по сравнению с используемым сейчас чугуном

Читайте также:  Трансмиссия автомобиля

Для гарантии соответствия серийных гильз эталонным образцам (а это очень высокие стандарты), в компании Federal-Mogul Powertrain используется прецизионное оборудование. Именно оно позволяет обеспечивать необходимые допуски – например, при хонинговании. А выходной контроль – это само собой. Он не менее тщательный, поэтому форма и размеры деталей неизменно оказываются в пределах жестких допусков.

Преимущества ультрапрочных гильз цилиндров первыми оценили производители двигателей для внедорожной техники. Это строительные, сельскохозяйственные и промышленные машины. Компания Federal-Mogul Powertrain также ожидает интереса со стороны производителей мощных двигателей для судов, генераторных установок и магистральных грузовых автомобилей. И снова слово представителям компании.

Распределение температуры по смазываемой части гильзы цилиндра Моделирование деформации гильзы по стандарту FEA

«Мы понимаем, что приоритеты для конкретных вариантов применения, а также рынков сбыта могут различаться. Поэтому предлагаем альтернативные решения, – сказал доктор Фолькер Шерер (Volker Scherer), руководитель подразделения Liners компании Federal Mogul Powertrain. – Для некоторых ключевыми качествами гильзы являются стоимость и доступность на рынке. Для других при проектировании сложных конструкций с большими нагрузками важны механические качества – как в случае с материалом GOE330. Мы же в любом случае можем предложить нашим клиентам комплект, включающий гильзу, поршень и поршневые кольца, оптимизированный под их требования».

В заключение отметим, что образцы новых гильз можно будет увидеть на Международной выставке коммерческого транспорта в Ганновере (Германия).

Конструкции гильз цилиндров

Назначение гильз, требования к гильзам цилиндров.

Стенки цилиндра двигателя образуют совместно с поршнем, кольцами и поверхностью камеры сгорания пространство переменного объема, в котором совершаются все рабочие процессы двигателя внутреннего сгорания. Стенка цилиндра должна быть тщательно обработана и образует с поршневыми кольцами пару скольжения.

Цилиндры и гильзы цилиндров нагружаются силами давления газов, боковой нагрузкой от поршня и температурной нагрузкой. Переменная по величине и направлению боковая нагрузка вызывает изгиб и вибрацию цилиндра и ослабляет его крепление к картеру. Стенки цилиндра под действием возникающих при движении поршня сил трения подвергаются, кроме того, износу.
Гильзы цилиндров должны быть прочными, жесткими, износостойкими, обеспечивать, возможно, меньшие потери на трение поршня о поверхность цилиндра. Внешняя и внутренняя поверхность гильз должна обладать антикоррозионной устойчивостью. Конструкция гильз должна также обеспечивать надежность уплотнений в местах стыков гильз с головкой и блоком цилиндров.
Гильзы цилиндров могут, являются как самостоятельной конструкционной единицей двигателя («мокрые» и гильзы двигателей воздушного охлаждения), так и являться элементом ремонтной технологии, предусмотренной заводом изготовителем (например: «сухие» гильзы для двигателей, где цилиндры выполнены заодно с блок-картером).
В автомобильных и тракторных двигателях наибольшее распространение получили чугунные гильзы.

По конструкции гильзы цилиндра современных автомобильных и тракторных двигателей можно разделить на три основные группы:

  1. «Мокрые» гильзы цилиндров.
  2. «Сухие» гильзы цилиндров.
  3. Гильзы для двигателей с воздушным охлаждением.

«Мокрые» гильзы. Конструкцией двигателя с водяным охлаждением предусмотрена полость в картере двигателя, так называемая «рубашка охлаждения». Гильза, соприкасающаяся свой поверхностью с охлаждающей жидкостью находящейся в «рубашке охлаждения» называется «Мокрой». «Мокрые» гильзы цилиндров обеспечивают лучший отвод тепла, но картер двигателя с такими гильзами обладает меньшей жесткостью. Большое распространение эти гильзы получили на грузовых и тракторных двигателях в силу своей высокой ремонтопригодности.
Как правило, выпускаемые производителями «мокрые» гильзы не требуют перед установкой, какой либо доработки. Изношенные «мокрые» гильзы в большинстве случаев не ремонтируют, а заменяют новыми без снятия двигателя с шасси. Для предотвращения прорыва газов в охлаждающую жидкость и просачивания этой жидкости в цилиндр и картер двигателя «мокрые» гильзы комплектуются уплотнительными прокладками. Внутренняя поверхность гильз тщательно обрабатывается (хонингуется)для того что бы обеспечить наличие требуемой масляной пленки для смазки поршневых колец. Двигатели с «мокрыми» гильзами устанавливаются почти на все современные коммерческие автомобили.

«Сухие» гильзы. Гильзы, не имеющие соприкосновения с охлаждающей жидкостью, называются «сухими» гильзами. Конструкцией некоторых двигателей предусмотрена заливка при изготовлении в блок картер гильз изготовленных из износостойкого материала, создавая тем самым оптимальные условия для работы цилиндропоршневой группы. Например, некоторые модели двигатели HONDA, Land Rover, Volkswagen, AUDI, VOLVO и многих других производителей имеют алюминиевый блок цилиндров (для уменьшения веса силового агрегата) и залитые в него «сухие» гильзы (для увеличения ресурса и повышения ремонтопригодности).
Но самое широкое распространение «сухие» гильзы получили в сфере капитального ремонта двигателя. Не «загильзованный» блок цилиндров современного двигателя имеет несколько, предусмотренных технологией, расточек с последующей установкой в него ремонтных поршней. Установка «сухих» гильз позволяет не менять блок двигателя даже после износа цилиндра расточенного в последний ремонтный размер.
Производители гильз выпускают так называемые, заготовки гильз, то есть гильзы имеющие запас по длине и внешнему диаметру, которые после токарной обработки запрессовываются с натягом в блок цилиндров. Такие гильзы как правило не имеют обработки внутренней поверхности. Они растачиваются и хонингуются только после установки гильзы в блок цилиндров. Поверхность блока цилиндров под установку тоже повергается тщательной обработке: расточке и в некоторых случаях хонингованию. Гильза с упором устанавливается в блок под давлением, с натягом (в среднем 0,03-0,04 мм), для гильз, не имеющих упора натяг больше. Наружная поверхность «сухих» ремонтных гильз, как правило, подвергается шлифовке, для увеличения плотности прилегания к блоку цилиндров.
Гильзы могут фиксироваться при установке верхним буртом, нижним буртом или вообще могут устанавливаться без упора.
Некоторые японские производители, например ISUZU, изготавливают двигатели с тонкостенными стальными гильзами, имеющими покрытие из пористого хрома железом. Такие гильзы не подвергаются механической обработке и устанавливаются в блок цилиндров без натяга, с небольшим усилием и удерживаются в блоке за счет прижатия широкого бурта гильзы головкой блока. Блок картер с сухими гильзами имеет повышенную жесткость по сравнению с блоком, с установленными «мокрыми» гильзами.

Гильзы цилиндров для двигателей с воздушным охлаждением. В двигателях воздушного охлаждения конструкция оребрения и необходимость создания охлаждающих воздушных потоков не позволяют применять блок-картерный тип отливки. В этих двигателях применяют отдельно отлитые цилиндры с воздушными ребрами, расположенными чаще всего перпендикулярно оси цилиндра.
Эти гильзы цилиндра крепятся к верхней части картера короткими шпильками через опорный фланец (несущие цилиндры) или при помощи анкерных (несущих) шпилек.
Гильзы цилиндров двигателей воздушного охлаждения изготавливают как из одного (монометаллические), так и из двух (биметаллические) металлов.
Монометаллические цилиндры делают из чугуна, реже из стали или легких сплавов. Из биметаллических цилиндров получили распространение чугунные или стальные цилиндры с залитыми (или навитыми) алюминиевыми ребрами.
Широкое распространение двигатели с воздушным охлаждением получили среди производителей тяжелой строительной техники. Ярким примером является всемирно известный производитель индустриальных двигателей немецкая фирма DEUTZ.

Требования к материалу для гильз цилиндров

Цилиндр работает в условиях резко переменных давлений в надпоршневой полости. Стенки ее соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500…2500°С, а средняя скорость скольжения поршня по стенкам достигает 11…17 м/с. Кроме того, в этой зоне происходит перекладка поршня, сопровождаемая ударными нагрузками на стенки цилиндра. Под действием высокого радиального давления колец происходит разрыв масляной пленки на стенках цилиндра – резко повышается трение, что приводит к интенсивному изнашиванию цилиндра и колец.

Продукты неполного сгорания, в первую очередь оксиды азота, вместе с водяными парами образуют агрессивную среду, являющуюся причиной коррозионного изнашивания. Интенсивность коррозионного изнашивания увеличивается при эксплуатации двигателя с пониженным температурным режимом (320…330 К). Износ цилиндров, колец и поршней увеличивается при наличии в масле абразивных частиц, поступающих в цилиндр двигателя вместе с воздухом при его некачественной очистке в воздухоочистителе, с топливом и маслом при некачественной заправке и фильтрации. Темпы абразивного изнашивания на 60…80 % превосходят темпы коррозионного, поэтому необходимо применять специальные меры для пылезащиты двигателя. Металл цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках.

В соответствии с этими требованиями основным материалом для цилиндров служит перлитный серый чугун с небольшими добавками легирующих элементов (никель, хром и др.), а также высоколегированный чугун, сталь и алюминиевые сплавы с хромовыми и другими покрытиями внутренних стенок. Поверхности последних подвергают закалке ТВЧ и тщательно обрабатывают, получая после шлифовки зеркальную поверхность – зеркало цилиндра. В случае изготовления блока цилиндров совместно с гильзами из алюминиевого сплава на внутреннюю поверхность гильз производится плазменное напыление стали и молибдена (рис.1).

Высокая температура газов в надпоршневой полости и большое количество теплоты, выделяющейся при трении поршня и поршневых колец о зеркало цилиндра, вызывают интенсивный нагрев стенок, вследствие чего возникает необходимость в постоянном отводе от них теплоты. Достигают это непрерывным охлаждением стенок цилиндров жидкостью или воздухом. Даже кратковременное прекращение такого охлаждения приводит к аварии и выходу из строя двигателя. На прогретом двигателе температуру стенок поддерживают в пределах 100…150°С. Более высокую температуру имеют при этом стенки верхней зоны цилиндров, омываемые наиболее горячими газами. В двигателях с воздушным охлаждением отдельные участки верхней зоны цилиндров нагреваются до 170…180°С, а средняя температура их стенок всегда бывает выше, чем при жидкостном охлаждении. В зависимости от способа охлаждения конструкция цилиндров и всего двигателя приобретает свои характерные особенности.

Цилиндры двигателей воздушного охлаждения отливают индивидуально, а для увеличения теплоотвода наружную поверхность их снабжают ребрами треугольного и реже прямоугольного сечения (рис.2).

Следовательно, при воздушном охлаждении цилиндр, строго говоря, состоит из двух конструктивных элементов: гильзы, или, как ее называют иногда, втулки и оребрения. Размер ребер и межреберных промежутков выбирают из условий, чтобы оребрение оказывало возможно меньшее сопротивление потоку охлаждающего воздуха и в то же время было достаточно развитым и обеспечивало нужную интенсивность теплоотвода. В существующих конструкциях площадь поверхности оребрения цилиндра примерно в 10 раз превышает площадь его зеркала в зоне оребрения.

В ДВС с воздушным охлаждением применяют как монолитные, так и комбинированные цилиндры. Первые из них отливают из чугуна, реже делают стальными, а в малых двигателях применяют также алюминиевые сплавы с хромированной поверхностью зеркала. Ребра отливают вместе с гильзой и механически не обрабатывают или нарезают на станках. Известен также способ навивки ребер из тонкой ленты (с развальцовыванием ее у основания). Чаще используют первый, наиболее простой и экономически выгодный метод. Комбинированные цилиндры представляют собой алюминиевую оребренную основу с запрессованной в нее, например, чугунной гильзой (рис.3). В таких цилиндрах высокая износостойкость сочетается с хорошим теплоотводом, так как теплопроводность алюминиевых сплавов в три-четыре раза выше теплопроводности чугуна.

Читайте также:  Удобство управления сцеплением автомобиля

Цилиндры двигателей с жидкостным охлаждением в отличие от рассмотренных оребренных изготовляют с полостью под охлаждающую жидкость, что значительно усложняет их конструкцию. Внутренние стенки образуют гильзу цилиндра, а внешние, более тонкие, стенки – его рубашку. Стенки рубашки охватывают гильзовую часть цилиндра так, что между ними образуется полость для циркуляции охлаждающей жидкости. Из соображений облегчения ремонта и увеличения срока службы цилиндров с жидкостным охлаждением их часто изготовляют комбинированными, со вставками на всю длину зеркала цилиндра и с легкосъемными гильзами. В 50…60-х годах прошлого века широко применяли также короткие вставки (около 50 мм длины), изготовлявшиеся из аустенитного износостойкого чугуна нирезист. Их запрессовывали в верхнюю наиболее изнашиваемую зону цилиндра и обрабатывали совместно с зеркалом цилиндра (гильзы). Срок службы цилиндров с такими вставками увеличивался в 2,5…3 раза. В настоящее время в связи с резким улучшением качества горюче-смазочных материалов и совершенствованием фильтров для воздуха и масла дорогостоящие нирезистовые вставки утратили свое значение. Вставки, запрессовываемые на всю длину цилиндра не соприкасаются с охлаждающей жидкостью, вследствие чего их называют сухими гильзами (рис.4).

Сухие гильзы не ослабляют общую жесткость цилиндра, но несколько усложняют его конструкцию и удорожают производство, поэтому в двигателях автомобилей с жидкостным охлаждением их используют сравнительно редко. При ремонтах двигателя, связанных с расточкой цилиндров, сухие гильзы сохраняют до тех пор, пока их ремонтный размер находится в допускаемых пределах.

Легкосъемные гильзы устанавливают в цилиндры свободно с гарантированным зазором (≈ 0,08 мм). Это большое их достоинство. В случае износа их легко заменяют новыми или другими, заранее отремонтированными. Легкосъемные гильзы непосредственно омываются охлаждающей жидкостью, циркулирующей в рубашке охлаждения, в связи с чем их называют мокрыми гильзами (рис.5).

Они имеют, как правило, опорный пояс или фланец и один или два установочных пояса с наружной стороны гильзы. С помощью установочных хорошо обрабатываемых поясов гильзу центрируют в соответствующих гнездах цилиндра, а опорный фланец фиксирует их положение по высоте цилиндра. Нижний установочный пояс гильз уплотняют с помощью резиновых или медных колец. Резиновые кольца чаще всего круглые, примерно 4-миллиметровые в количестве 2…3 шт. ставят с натягом обычно на нижнем утолщенном установочном поясе гильзы в специально сделанные для этой цели проточки (рис. 6,а).

1 – блок-картер; 2 – рубашка охлаждения; 3 – вставка; 4 – гильза цилиндра; 5 – уплотнительные кольца (резиновые или медные, устанавливаемые под бурт); 6 – антикавитационное кольцо; 7 – медная прокладка

Если резиновые кольца не ставят на гильзу, то ее нижний установочный пояс изготовляют без утолщения (рис. 6,б). Глубину проточек делают меньше сечения резинового кольца, поэтому последние несколько выступают из канавок, а при установке гильзы в гнездо деформируются и надежно уплотняют стык. При использовании резиновых колец прямоугольного сечения нижний установочный пояс снабжают буртиком. Уплотнительное кольцо надевают с натягом непосредственно на нижний установочный пояс гильзы, а в центрирующем гнезде цилиндра делают соответствующий уступ, к которому резиновое кольцо плотно прижимается буртиком гильзы (рис. 6,в). Применение медного уплотнительного кольца показано на рис. 6,г. Легкосъемные гильзы при этом имеют только один удлиненный нижний установочный пояс, к которому вплотную примыкает опорный фланец гильзы. Между этим опорным фланцем и уступом в центрирующем гнезде цилиндра и зажимают уплотнительное кольцо. Это же кольцо используется для регулирования положения гильзы по высоте. В верхней зоне цилиндра такая гильза совсем не соприкасается со стенками рубашки охлаждения, а имеет только небольшое утолщение, которое улучшает уплотнение, ее газового стыка, достигаемого с помощью прокладки, которую устанавливают между цилиндром и его головкой. Однако данная конструкция гильзы приводит к некоторому короблению ее при затяжке головки цилиндров.

Для обеспечения уплотнения газового стыка верхняя торцовая плоскость гильзы выступает над плоскостью блока на 0,05…0,15 мм.

В дизелях под действием значительных динамических нагрузок при перекладке поршня стенки гильзы могут совершать колебания в радиальном направлении. Так как стенки гильзы окружены жидкостью, то в ней может начаться кавитация, что приводит к износу, а иногда и разрушению внешней поверхности гильзы и блока.

Для предотвращения кавитационного разрушения на гильзах некоторых двигателей протачивают специальную канавку, в которую вставляют антикавитационное кольцо 6 (рис.6,а) прямоугольного сечения. Оно расположено между гильзой и отверстием в блоке цилиндров и, кроме того, через него нижний пояс гильзы опирается на кромку отверстия блока. В сборе с гильзой кольцо устанавливают в блок с натягом, что уменьшает амплитуду колебаний гильзы цилиндров.

В бензиновых двигателях, вследствие меньших максимальных нагрузок и более плавной перекладки поршня, явления кавитации практически не наблюдается.

Гильзы цилиндров

Создание максимально легкого и мощного двигателя – первоочередная задача для инженеров всех автомобильных компаний, которую они с тем или иным успехом пытаются решить уже более ста лет. Настоящей революцией стало появление двигателей, полностью сделанных из алюминия. Однако применение этого материала поставило перед разработчиками новую задачу – как создать в алюминиевом блоке прочные цилиндры? Самым удачным решением стало применение гильз, активно применявшихся при создании двигателей для мотоциклов, у которых нет общего блока цилиндров.

Виды гильз и требования, которые к ним предъявляются

Гильза должна быть очень прочной и тугоплавкой, ведь в случае с алюминиевым блоком он играет лишь роль корпуса, в котором она держится. Противостоять теплу, давлению и износу ей приходится самостоятельно. Поэтому гильзы должны обладать высокой износостойкостью, высокой антикоррозийной устойчивостью, жаростойкостью и прочностью. В зависимости от конструкции двигателя гильзы делятся на «мокрые» и «сухие». суть этого термина напрямую связана с особенностями системы водяного охлаждения двигателя.

“Мокрые” гильзы получили наибольшее распространение, так как отлично решают задачу отвода тепла

«Мокрыми» называются гильзы, наружная поверхность которых омывается охлаждающей жидкостью, циркулирующей в системе каналов, пронизывающих толщу блока цилиндров. Эта система называемой «водяной рубашкой» и служит для равномерного отвода тепла от блока цилиндров. В районе установки гильз охлаждающая жидкость “выходит на поверхность”, чтобы напрямую омывать стенки гильзы. Поэтому такой тип гильз и называется мокрым. Блок цилиндров с «мокрыми» гильзами обеспечивает лучший отвод тепла, поэтому «мокрые» гильзы получили очень широкое распространение. Они применяются на легковых автомобилях Volvo, Renault, ГАЗ-24, Москвич и других.

Уплотнение между гильзой и блоком достигается путем установки медной прокладки между отлитым буртом гильзы и плоскостью блока

Ремонт двигателей, оснащенных «мокрыми» гильзами, крайне прост – в блок устанавливается новые пары гильза-поршень, не требующие доработки. Для капремонта даже нет необходимости снимать двигатель, и он может быть выполнен даже в полевых условиях.

«Сухие» гильзы запрессованы в тело цилиндра и не имеют прямого контакта с охлаждающей жидкостью. Некоторые производители предпочитают делать алюминиевые блоки с не сменными гильзами методом литья. В этом случае гильзы укрепляются в форме для отливки, которая позже заполняется расплавленным алюминием. Созданные таким образом блоки цилиндров по жесткости от обычных чугунных не отличаются. При необходимости ремонта гильзы растачиваются и хонингуются, как обычные цилиндры. Такую технологию используют для производства двигателей Volkswagen, Land Rover, Honda, Audi,Volvo и ряда других.

“Сухие” гильзы хуже отводят тепло, но их применение позволяет придать блоку цилиндров монолитную жесткость

Применение гильз снимает ограничение с количества капремонтов, которые способен выдержать блок. Теоретически этом можно делать неограниченное количество раз, хотя на деле это никому не нужно, так как кузов автомобиля, к сожалению, не вечен. Так, для обычного блока без гильз допустимо не более 3-4 предусмотренных изготовителем калибров ремонтных поршней. Это ограничивает количество возможных ремонтов. Когда же выполнен последний ремонт и цилиндр больше не подлежит расточке, то «выручают» гильзы, запрессовка которых вновь поднимает ресурс блока на несколько ремонтов.

Установка гильзы в цилиндр

Внутренняя поверхность цилиндра растачивается и тщательно шлифуется перед запрессовкой, такой же обработке подвергают и наружную поверхность гильзы для плотности посадки в цилиндр. Затем гильзы, имеющие, как правило, упорную кромку в верхней части, запрессовываются в расточенный цилиндр с натягом 0.03-0.04 мм.

Поршень и гильза цилиндра

«Мокрые» гильзы полностью “готовы к употреблению”. После запрессовки в блок цилиндров внутреннюю поверхность обрабатывать не нужно, на ней уже есть хон. Сухие гильзы, как правило, нужно растачивать после установки.

Гильзы растачивают и хонингуют строго под определенную группу поршней. Каждый поршень замеряется, и по его замерам идет расточка гильзы. После такой подгонки поршень маркируется по цилиндру и не подлежит установке в другие цилиндры. Кстати, при капремонте гильзованного двигателя рекомендуется покупать так называемые “ПОНы”, подобранные в заводских условиях комплекты из гильз, цилиндров и пальцев.

Как исключение можно упомянуть японскую компанию Isuzu, выпускающую двигатели, где в блоке установлены стальные тонкостенные гильзы с покрытием из пористого хрома, не требующие механической обработки.

В двигателях Isuzu гильзы устанавливаются в блок без натяга и удерживаются в теле за счет прижима притянутой болтами установленной поверх головки блока цилиндров.

Гильзы в двигателях с воздушным охлаждением

Для двигателей воздушного охлаждения гильзы цилиндров выполнены по образу мотоциклетных, с ребрами охлаждения. Так как цилиндры должны охлаждаться потоком воздуха, из них нельзя сформировать блок и они устанавливаются на двигатель в виде отдельных деталей.

Гильзы крепятся к картеру (через медные прокладки) посредством невысоких шпилек через специальный опорный фланец или же посредством анкерных шпилек, проходящих сквозь всю головку цилиндров. Головка устанавливается на эти шпильки и затягивается в обычном порядке, прижимая тем самым цилиндры к картеру и обеспечивая герметизацию.

Мотоциклетные двигатели с воздушным охлаждением и стали “донором”, давшим миру автомобильные гильзованные двигатели

Для двигателей с воздушным охлаждением гильзы цилиндров изготавливаются либо из одного вида металла (монометаллические), либо из двух металлов (биметаллические).

Монометаллические цилиндры воздушного охлаждения выполняют в основном из чугуна, иногда из стали или из легких сплавов.

Биметаллические цилиндры также выполнены из чугуна или стали, а поверх корпуса отлиты алюминиевые ребра.

Недостатки блоков с гильзами воздушного охлаждения

Двигатели с гильзами воздушного охлаждения очень восприимчивы к температурному режиму и при перегреве «страдают» отпусканием резьбы шпилек крепления цилиндров в алюминиевом блоке. Это ведет к вытягиванию шпильки и разрушению резьбы, что ослабляет затяжку гильзы и вызывает разгерметизацию и потерю компрессии. Попытка подтяжки соединения заканчивается полным выходом посадочной резьбы шпильки из тела картера и последующим ремонтом. Иными словами, допускать перегрева алюминиевого двигателя не стоит ни при каких обстоятельствах.

Ссылка на основную публикацию