Что такое хладноломкость

Что такое хладноломкость

Механические свойства и хладноломкость стали определяются прежде всего тремя механизмами упрочнения:

1) измельчением зерна;

2) упрочнением феррита атомами легирующих элементов и примесей, образующими твердые растворы внедрения и замещения;

3) упрочнением выделениями частиц второй фазы различной степени дисперсности.

Углерод, хотя и способствует эффективному упрочнению, резко снижает вязкость и пластичность стали, способствуя повышению хладноломкости. Принято считать, что увеличение содержания углерода в стали на каждые 0,1 % повышает порог хладноломкости на 20 К (рисунок 7.1).

Рисунок 7.1 – Влияние содержания углерода на хладноломкость стали

Снижение содержания углерода предотвращает образование при сварке в зоне термического влияния хрупких закалочных мартенситных структур. В свариваемых хладостойких сталях содержание углерода должно быть ниже 0,2 %, и в структуре должно быть мало перлита (малоперлитные стали).

Введение в углеродистую сталь до 2 % марганца и до 0,8 % кремния упрочняет ферритную матрицу благодаря образованию твердого раствора замещения. Легирование марганцем измельчает зерно и увеличивает вязкость феррита, что повышает величину работы распространения трещины при низких температурах. Легирование стали малыми добавками титана, ниобия и ванадия позволяет получать мелкодисперсные выделения второй фазы типа VC, TiC, Nb(C,N), V(C,N), эффективно упрочняющие матрицу. Эти же элементы способствуют измельчению зерна и снижают склонность стали к его росту. На границах зерен образуются дисперсные частицы карбидов и карбонитридов ниобия, титана и ванадия, тормозящие рост зерен при нагревании. Увеличение содержания этих элементов более 0,15 %, хотя и увеличивает прочность, но одновременно повышает склонность стали к хрупкому разрушению.

Для повышения хладостойкости и свариваемости строительных сталей применяют малоперлитные стали с низким содержанием углерода, микролегированные сильными карбидообразующими элементами. Кроме того, используют стали, легированные азотом в сочетании с различными сильными нитридообразующими элементами, в качестве которых чаще всего применяют ванадий, алюминий, ниобий и титан. Выделение азота из твердого раствора в виде нитридов уменьшает его охрупчивающее действие. Это увеличивает прочность стали и, способствуя измельчению зерна, не ухудшает ее хладостойкости.

К сталям этой группы относятся стали марок 09Г2, 09Г2С, 09Г2СД, 16Г2АФ, 14Г2АФ, 14Г2САФ и др. Из-за дефицитности никеля его применение в сталях этого типа ограничено. Стали типа 14Г2АФ, 16Г2АФ и их варианты 14Г2САФ, 16Г2САФ широко используются в нормализованном состоянии для изготовления газопроводных труб диаметром 1020 – 1420 мм. Их прочность oв = 560 – 600 МПа, а ударная вязкость KCU при –60°С (213 К) в случае снижения содержания серы и фосфора до 0,01 % составляет 60 Дж/см 2 .

Из всех легирующих элементов никель в наибольшей степени понижает хладноломкость стали. Никель и железо полностью растворимы друг в друге, имеют близкое строение кристаллических решеток. Никель не является карбидообразующим элементом, он находится в твердом растворе в феррите или аустените. Никель упрочняет феррит и одновременно увеличивает его вязкость. Никель увеличивает прокаливаемость стали, измельчает зерно, а также снижает концентрацию примесей на дислокациях и уменьшает блокирование дислокаций примесными атомами внедрения. Введение 1 % Ni снижает порог хладноломкости примерно на 20 К.

Хром несколько повышает прочность стали и при содержании до 1 % увеличивает ее вязкость. Увеличение концентрации хрома более 1,5 % приводит к повышению порога хладноломкости.

Сталь 09ХГ2НФБ в результате контролируемой прокатки с последующим регулируемым охлаждением в процессе прокатки на стане имеет преимущественно бейнитную структуру с небольшим количеством мелкозернистого феррита, упрочненного дисперсными частицами карбонитридных фаз V и Nb. При o0,2 > 700 МПа и oв > 900 МПа ее b5 = 20,5 %. При –60°С ударная вязкость KCU = 104 Дж/см 2 , а критическая температура хрупкости Т50 = –100°С. Сталь хорошо сваривается и может быть использована в сварных конструкциях ответственного назначения в строительстве и машиностроении.

Введение молибдена в количествах до 0,5 % существенно снижает порог хладноломкости. Молибден оказывает сдерживающее влияние на диффузионную подвижность фосфора и уменьшает отпускную хрупкость.

Для магистральных трубопроводов северного исполнения в США и Канаде применяют высокопрочные свариваемые Mn – Mo – Nb стали с микроструктурой игольчатого феррита, содержащие 1,6 – 2,2 % Мn, 0,25 – 0,4 % Мо, 0,04 – 0,10 % Nb. Упрочнение выделениями Nb(C,N) происходит при ее охлаждении после прокатки и в процессе старения горячекатаной стали при температуре 575 – 650°С.

Трубы фирмы «Италсидер» такого состава со структурой игольчатого феррита при толщине стенки 20 мм имеют порог хладноломкости Т50 = –50°С при oв = 650 МПа и o0,2 = 540 МПа.

Для железнодорожных мостов северного исполнения применяют сталь 12Г2МФТ. Прокат из стали 12Г2МФТ толщиной до 40 мм характеризуется не только более высокой прочностью, но и более высокими характеристиками вязкости разрушения в широком температурном диапазоне.

Особую сложность представляет повышение хладостойкости литых сталей. Литая сталь отличается от деформированной наличием дефектов в виде раковин и трещин. Литые стали имеют крупное первичное зерно, и его измельчение представляет сложную задачу. Термическая обработка по обычным режимам полностью не устраняет структурные особенности литого металла.

Наиболее перспективным способом измельчения зерна в литых сталях, как и в деформированных, является микролегирование такими карбидообразующими элементами, как V, Ti, Nb, Zr.

Несмотря на существенные структурные различия литых сталей, наблюдается единая зависимость их параметра трещиностойкости Кс от o0,2 при различных видах разрушения: хрупком, квазихрупком и вязком (рисунок 7.2).

Рисунок 7.2 – Зависимость параметра трещиноустойчивости Кс от предела текучести o0,2 литых сталей: I – вязкое разрушение; II – вязко-хрупкое разрушение; III – хрупкое разрущение

Оптимальными для получения максимальной трещиностойкости и хладостойкости являются литые стали, имеющие предел текучести от 300 – 400 МПа, так как они обладают рациональным сечением характеристик прочности и пластичности. Стали с пределом текучести меньше 300 МПа не могут быть использованы в качестве хладостойких в связи с низкими характеристиками прочности. Стали с пределом текучести более 800 МПа обладают низкой хладостойкостью вследствие пониженной пластичности. Эти стали в условиях низких климатических температур могут быть использованы лишь в качестве износостойких.

Что такое Хладноломкость

Значение слова Хладноломкость по Ефремовой:

Хладноломкость — Отвлеч. сущ. по знач. прил.: хладноломкий.

Хладноломкость в Энциклопедическом словаре:

Хладноломкость — возрастание хрупкости материала при понижении температуры.

Значение слова Хладноломкость по словарю Брокгауза и Ефрона:

Хладноломкость — Термином этим обозначается недостаток, свойственный некоторым сортам ковкого железа (а также нек. др. металлов) и состоящий в склонности металла растрескиваться и ломаться при холодной механической его обработке. Недостаток этот не мешает, однако же, железу беспрепятственно выносить различные механические формоизменения в нагретом состоянии, коваться, свариваться и т. д. Свойство X. вызывается в железе посторонними примесями, главным образом, примесью фосфора, сурьмы, мышьяка и вольфрама, а отчасти также серы, меди, цинка и хрома. Из этих примесей преобладающее влияние оказывает фосфор. Влияние его проявляется тем сильнее, чем богаче металл углеродом. Поэтому, напр., в богатой углеродом твердой тигельной стали увеличение примеси фосфора на несколько тысячных долей процента уже значительно усиливает X., между тем, как в мягком железе даже колебания в содержании фосфора в несколько сотых процента не оказывают заметного влияния на вязкость, т. е. не усиливают X. Свойство X. проявляется сильнее в литом железе, нежели в сварочном. В литом железе вызывают X. уже такие примеси фосфора, которые оказываются еще совершенно безопасными для сварочного. Так, литое железо, если оно предназначается для приготовления изделий, долженствующих отличаться крепостью, не должно содержать в себе фосфора свыше 0,1%. примесь фосфора в 0,2% допускается лишь в литом железе, назначающемся для неответственных, в смысле крепости поделок. Между тем, как сварочное железо, при содержании фосфора в 0,3 и даже 0,4%, хотя уже проявляет признаки X., но еще может обрабатываться без особенных затруднений. С содержанием фосфора 0,25—0,30% оно иногда еще может коваться на гвозди и тянуться в проволоку (то и другое в холодном состоянии). Точные безопасные пределы содержания фосфора, не вызывающие еще в железе X., установлены быть не могут, так как, во-первых, на это свойство могут влиять одновременно и другие примеси, а во-вторых, свойство это немало зависит и от способа обработки, которым сырые болванки пудлингового железа превращаются в полосы сортового железа. Чем дольше железо подвергается горячей проковке, тем более исчезает его кристаллическое сложение и тем более ослабевает склонность его к X. при одном и том же содержании фосфора. Поэтому, сравнивая на X. два различных сорта железа, можно получить надежные выводы лишь в том только случае, когда сравниваемые полосы имеют одинаковые поперечные сечения и получены одним и тем же числом последовательных механических операций. Сурьма и мышьяк сильно увеличивают X. железа, но естественная примесь этих тел в железе настолько невелика, что не вызывает заметных проявлений этого свойства. Что касается вольфрама, который вводится в углеродистое железо с целью повысить его твердость (при изготовлении инструментальной, так назыв. “вольфрамовой” стали), то влияние его выражается нередко весьма интенсивно, и с таким металлом в холодном состоянии приходится обращаться весьма осмотрительно. Умеренная примесь марганца ослабляет вредное влияние фосфора, т. е. несколько понижает X. железа и стали. Степень X. железа измеряется довольно точно числом ударов, которое в состоянии вынести, не ломаясь, железная полоса. Так, фосфористые сорта некоторых английских марок (например стаффордширское железо), содержащие до 0,25% фосфора, разлетаются нередко при первом же ударе, бедные же фосфором сорта железа (например шведское железо), с содержанием не свыше 0,02% фосфора, выдерживают, не ломаясь, до 10 ударов. Удары производятся молотом или падающим грузом по подпертой по концам полосе или бросанием ее на наковальню. Внешние признаки хладноломкого железа суть: белесоватый цвет, сильный блеск и чешуйчатое сложение. Будучи пригодно на кузнечные поделки, хладноломкое железо совершенно не годится на мостовые и т. п. сооружения, долженствующие подвергаться ударам и сотрясениям при низких температурах. В. С. Кнаббе. &#916..

Читайте также:  Электромагнитные муфты

Определение слова «Хладноломкость» по БСЭ:

Хладноломкость — склонность металлов к появлению (или значительному возрастанию) хрупкости при понижении температуры. Х. связана с происходящим при этом из-за затруднённости движения дислокаций значительным повышением предела текучести. начиная с некоторой температуры (т. н. критическая температура хрупкости, или порог хладноломкости) хрупкое разрушение наступает раньше, чем состояние пластической текучести. Х. присуща низколегированным сталям, танталу, вольфраму, хрому, молибдену и некоторым др. металлам с объёмноцентрированной кубической решёткой и сплавам на их основе.
Х. способствует наличие примесей внедрения в металлах, что в сочетании со сжатием кристаллической решётки при понижении температуры приводит к увеличению внутренних напряжений. Температура перехода от вязкого разрушения к хрупкому зависит от режима термической обработки, величины зерна, скорости нагружения, величины концентрации напряжений. Чаще всего Х. оценивают путём испытаний на ударный изгиб призматических образцов с надрезом, определяя при этом работу деформации и разрушения. Склонность к Х. можно также оценить по температуре резкого снижения пластичности или по доле волокнистого излома на поверхности разрушения. Х. имеет особое значение при эксплуатации конструкций в температурных условиях северных районов, для космических аппаратов, луноходов, водородных двигателей. Снижение Х. достигается очисткой металлов от вредных примесей, термообработкой, легированием.
С. И. Кишкина.

ОБЩИЕ СВЕДЕНИЯ. Явление хладноломкости, т.е

Явление хладноломкости, т.е. хрупкого разрушения, связанного с действием низких температур, впервые стало предметом широкого обсуждения в связи с бурным строительством железных дорог в конце XIX века.

После замены пудлингового способа производства на бессемеровский и мартеновский было отмечено, что рельсы, изготовленные из литого металла, внезапно разрушались при понижении температуры. Уже тогда была признана актуальной проблема хладноломкости металлов, необходимость изучения ее природы и выработки мероприятий по ее устранению.

После введения в инженерную практику такого производительного технологического процесса, как сварка, участились крупные аварии сварных железнодорожных мостов, морских судов, резервуаров для хранения нефти, магистральных газопроводов. При этом аварии чаще проходили в высоких широтах в зимнее время года при совместном действии низкой температуры и ветра. Анализ разрушений показал, что почти в половине случаев разрушение начиналось в дефектных местах сварных швов. Особую актуальность проблема хладноломкости приобрела в связи с освоением арктических и антарктических районов.

Эффективность работы оборудования и транспорта в зимнее время в этих районах резко падает. Анализ работы автохозяйств арктической зоны показал, что в зимнее время срок службы автомобилей обычного типа по сравнению с зоной умеренного климата сокращается в два раза, а аварии и поломки, связанные с климатическими условиями, выводят из строя до 25 % парка машин. Число поломок горных экскаваторов и бульдозеров в Сибири в зимние месяцы возрастает в 2,7–7 раз. При этом особенно опасным является период пуска машин в работу после остановки.

При понижении температуры наблюдаются аварии газо- и трубопроводов, мостов, резервуаров, нефтехранилищ. В период зимнего отстоя судов наблюдается возникновение трещин по бортам и днищу, а также случаи полного разрушения судов. Зародыши трещин, как правило, располагаются в разупрочненных местах термического влияния сварки и зонах концентрации напряжений.

Для последних лет характерно бурное развитие холодильного машиностроения, производства кондиционеров и криогенной техники.

Стимулом для развития криогенной техники явилось осуществление космических и ядерных программ. Криотехника имеет огромные перспективы в различных хозяйственных и научных отраслях. Важнейшим фактором дальнейшего развития техники низких температур является создание материалов, пригодных для работы в этих условиях.

Конструирование и выпуск хладостойкой и криогенной техники должны быть основаны на глубоком знании поведения материалов при низких температурах, надежных методах оценки работоспособности и долговечности материалов, научно обоснованных рекомендациях по выбору материалов.

Под хладостойкостью материала понимают способность его сопротивляться деформации и разрушению при понижении температуры.

Особенностью низкотемпературной службы является ужесточение требований к материалу по пластичности и вязкости. Определенную сложность представляет выбор необходимого уровня пластических и вязких свойств. Обычно минимальная рабочая температура определяется температурой вязко-хрупкого перехода, при которой вязкость падает до неприемлемо малых значений.

Эту характеристику можно оценивать, в частности, задавая требуемый уровень ударной вязкости или долю вязкой составляющей в изломе и определяя соответствующие критические температуры, например температуры, соответствующие KCV = 20 и KCU = 30 Дж/см 2 или Fв = 50 %.

Однако вид излома в некоторых случаях не дает объективной оценки критической температуры хрупкости. При испытании аустенитных сталей излом сохраняет вязкий характер во всем температурном диапазоне. Объективная оценка вида изломов высокопрочных сталей типа 20ХГНР также затруднена, так как излом, как правило, имеет однородный матовый или бархатистый характер.

Проведение испытаний на динамический изгиб образцов с концентратором напряжений позволяет дополнительно учесть влияние скорости нагружения и получить при этом более высокие критические температуры большинства сталей.

Использование вместо образцов типа Менаже (R = 1 мм) образцов с более острым надрезом типа Шарпи (R = 0,25 мм) или с инициированной усталостной трещиной позволяет более надежно выявить критическую температуру хрупкости.

Сложность количественной оценки влияния различных конструкторско-технологических факторов, размеров деталей, уровня остаточных напряжений, вида напряженного состояния и условий нагружения на надежность машин и конструкций затрудняют создание нормативных рекомендаций по применению материалов для работы в конкретных условиях.

По хладостойкости металлические материалы, используемые при низких температурах, условно могут быть разбиты на четыре основные группы:

1. Металлы и сплавы, характеристики механических свойств которых позволяют использовать их до –60 °С. Они являются основными конструкционными материалами холодильного машиностроения. Их используют также для изготовления изделий так называемого северного исполнения. К этой группе относятся качественные углеродистые и низколегированные стали ферритного и перлитного классов с ОЦК решеткой.

2. Ко второй группе относятся сплавы, сохраняющие вязкость и пластичность при охлаждении до 170 К. Это стали с 0,2–0,3 % С, дополнительно легированные Ni, Cr, Ti, Mo. К этой группе относятся, например, низкоуглеродистые ферритные стали с 2–5% Ni, используемые при температурах 210–150 К.

3. К третьей группе относятся сплавы, способные без ухудшения свойств выдерживать температуры до 77 К (температура кипения жидкого азота). Сюда относятся стали типа 12Х18Н10Т, 0Н9А, большинство сплавов на основе Al, Ti, Cu, не обнаруживающих склонности к хрупкому разрушению. Для ненагруженных конструкций с целью экономии Ni применяют Cr—Mn и Cr—Ni—Mn стали типа 10Х14Г14Н4Т (ЭИ711), 03Х13АГ19 (ЧС36), 07Х21Г7АН5 (ЭП222).

4. К четвертой группе относятся сплавы, используемые для работы при температуре ниже 77 К. К этой группе принадлежат материал, используемые в космической технике, производстве и потреблении водорода, экспериментальной физике. Для работы при таких температурах пригодны лишь высоколегированные коррозионностойкие стали типа 10Х11Н23Т3МР (ЭП33), 03Х20Н16АГ6, некоторые бронзы, никелевые, алюминиевые сплавы, легированные Mg, и сплавы титана.

Читайте также:  Что нужно для ремонта двигателя?

Хладноломкость

Значение слова Хладноломкость по Ефремовой:
Хладноломкость – Отвлеч. сущ. по знач. прил.: хладноломкий.

Хладноломкость в Энциклопедическом словаре:
Хладноломкость – возрастание хрупкости материала при понижении температуры.

Значение слова Хладноломкость по словарю Брокгауза и Ефрона:
Хладноломкость — Термином этим обозначается недостаток, свойственный некоторым сортам ковкого железа (а также нек. др. металлов) и состоящий в склонности металла растрескиваться и ломаться при холодной механической его обработке. Недостаток этот не мешает, однако же, железу беспрепятственно выносить различные механические формоизменения в нагретом состоянии, коваться, свариваться и т. д. Свойство X. вызывается в железе посторонними примесями, главным образом, примесью фосфора, сурьмы, мышьяка и вольфрама, а отчасти также серы, меди, цинка и хрома. Из этих примесей преобладающее влияние оказывает фосфор. Влияние его проявляется тем сильнее, чем богаче металл углеродом. Поэтому, напр., в богатой углеродом твердой тигельной стали увеличение примеси фосфора на несколько тысячных долей процента уже значительно усиливает X., между тем, как в мягком железе даже колебания в содержании фосфора в несколько сотых процента не оказывают заметного влияния на вязкость, т. е. не усиливают X. Свойство X. проявляется сильнее в литом железе, нежели в сварочном. В литом железе вызывают X. уже такие примеси фосфора, которые оказываются еще совершенно безопасными для сварочного. Так, литое железо, если оно предназначается для приготовления изделий, долженствующих отличаться крепостью, не должно содержать в себе фосфора свыше 0,1%; примесь фосфора в 0,2% допускается лишь в литом железе, назначающемся для неответственных, в смысле крепости поделок. Между тем, как сварочное железо, при содержании фосфора в 0,3 и даже 0,4%, хотя уже проявляет признаки X., но еще может обрабатываться без особенных затруднений. С содержанием фосфора 0,25—0,30% оно иногда еще может коваться на гвозди и тянуться в проволоку (то и другое в холодном состоянии). Точные безопасные пределы содержания фосфора, не вызывающие еще в железе X., установлены быть не могут, так как, во-первых, на это свойство могут влиять одновременно и другие примеси, а во-вторых, свойство это немало зависит и от способа обработки, которым сырые болванки пудлингового железа превращаются в полосы сортового железа. Чем дольше железо подвергается горячей проковке, тем более исчезает его кристаллическое сложение и тем более ослабевает склонность его к X. при одном и том же содержании фосфора. Поэтому, сравнивая на X. два различных сорта железа, можно получить надежные выводы лишь в том только случае, когда сравниваемые полосы имеют одинаковые поперечные сечения и получены одним и тем же числом последовательных механических операций. Сурьма и мышьяк сильно увеличивают X. железа, но естественная примесь этих тел в железе настолько невелика, что не вызывает заметных проявлений этого свойства. Что касается вольфрама, который вводится в углеродистое железо с целью повысить его твердость (при изготовлении инструментальной, так назыв. “вольфрамовой” стали), то влияние его выражается нередко весьма интенсивно, и с таким металлом в холодном состоянии приходится обращаться весьма осмотрительно. Умеренная примесь марганца ослабляет вредное влияние фосфора, т. е. несколько понижает X. железа и стали. Степень X. железа измеряется довольно точно числом ударов, которое в состоянии вынести, не ломаясь, железная полоса. Так, фосфористые сорта некоторых английских марок (например стаффордширское железо), содержащие до 0,25% фосфора, разлетаются нередко при первом же ударе, бедные же фосфором сорта железа (например шведское железо), с содержанием не свыше 0,02% фосфора, выдерживают, не ломаясь, до 10 ударов. Удары производятся молотом или падающим грузом по подпертой по концам полосе или бросанием ее на наковальню. Внешние признаки хладноломкого железа суть: белесоватый цвет, сильный блеск и чешуйчатое сложение. Будучи пригодно на кузнечные поделки, хладноломкое железо совершенно не годится на мостовые и т. п. сооружения, долженствующие подвергаться ударам и сотрясениям при низких температурах. В. С. Кнаббе. Δ.

Определение слова «Хладноломкость» по БСЭ:
Хладноломкость – склонность металлов к появлению (или значительному возрастанию) хрупкости при понижении температуры. Х. связана с происходящим при этом из-за затруднённости движения дислокаций значительным повышением предела текучести; начиная с некоторой температуры (т. н. критическая температура хрупкости, или порог хладноломкости) хрупкое разрушение наступает раньше, чем состояние пластической текучести. Х. присуща низколегированным сталям, танталу, вольфраму, хрому, молибдену и некоторым др. металлам с объёмноцентрированной кубической решёткой и сплавам на их основе.
Х. способствует наличие примесей внедрения в металлах, что в сочетании со сжатием кристаллической решётки при понижении температуры приводит к увеличению внутренних напряжений. Температура перехода от вязкого разрушения к хрупкому зависит от режима термической обработки, величины зерна, скорости нагружения, величины концентрации напряжений. Чаще всего Х. оценивают путём испытаний на ударный изгиб призматических образцов с надрезом, определяя при этом работу деформации и разрушения. Склонность к Х. можно также оценить по температуре резкого снижения пластичности или по доле волокнистого излома на поверхности разрушения. Х. имеет особое значение при эксплуатации конструкций в температурных условиях северных районов, для космических аппаратов, луноходов, водородных двигателей. Снижение Х. достигается очисткой металлов от вредных примесей, термообработкой, легированием.
С. И. Кишкина.

Микроструктура – внутреннее строение металлов и сплавов, изучаемое с помощью специальных приборов при большом увеличении изображения.

Для этих целей используют оптические и электронные микроскопы.

В оптическом микроскопе изображение формируется в отраженном свете при увеличении от 100 до 2500 раз. С помощью оптических микроскопов можно изучать элементы микроструктуры размером не менее 0,2 мкм.

Микроструктуру в оптическом микроскопе изучают на специальных образцах микрошлифах, которые предварительно вырезают из детали или заготовки, шлифуют, полируют и протравливают в химических реактивах с целью создания на поверхности рельефа для отражения и преломления лучей от различных участков микрошлифа.

В электронных микроскопах используются не оптические, а электронные лучи с очень малой длиной волны. Это позволяет изучать объекты до 0,2 – 0,5 нм. В настоящее время используются два типа электронных микроскопов: ПЭМ – просвечивающий электронный микроскоп и РЭМ – растровый электронный микроскоп. Наибольшее распространение нашли ПЭМ, которые позволяют получить увеличение 100 000 и более раз. Для работы на электронных микроскопах требуется приготовление специальных образцов по достаточно сложной технологии.

Исследование микроструктуры с помощью микроскопов называется микроанализом (металлографическим анализом) или металлографией.

В результате металлографического анализа можно определить:

Величину зерна (рис.3.4 а и б);

а)

б)

Рис.3.4. Микроструктура сплава с крупным (а )

мелким (б) зерном.

Наличие фаз, структурных составляющих, дисперсных частиц; их количество, величину, взаимное расположение, строение.

Фаза – обособленная часть структуры, отделенная от соседней границей раздела, при переходе через которую могут меняться состав, строение и свойства.

Структурная составляющая — более общее понятие, может включать в себя 2 и более фазы, также является обособленной частью структуры.

Дисперсные частицы – мельчайшие частицы, распределенные по структуре и представляющие химические соединения Ме с Ме, либо Ме с неметаллами (нитриды, оксиды, карбиды и т.п.). Формируются в структуре в процессе дополнительной обработки материалов с целью изменении свойств (рис.3.5).

Рис. 3.5. Наличие в микроструктуре дисперсных частиц.

Способ изготовления детали (зернистое строение, рис.3.5, или

ориентированное, рис.3.6, а, б).

а)

б)

Рис.3.6. Микроструктура деформированного металла:

б) Волокнистая структура

Вид разрушения металла (рис.3.7).

а)

б)

Рис.3.7. Микроструктура (изображение в электронном микроскопе)

а) вязкое разрушение

б) хрупкое разрушение

Краевые дислокации, вышедшие на поверхность металла (рис.3.8)

а)

б)

Рис.3.8. Микроструктура металла (изображение

в электронном микроскопе) с краевыми дислокациями.

Наличие и вид трещины после разрушения материала под воздействием различных внешних факторов (рис.3.9.)

Рис.3.9. Микроструктура материала после

разрушения под воздействием внешней нагрузки

и агрессивной среды (с наличием трещины).

Изображение в оптическом микроскопе.

Превращения, происходящие в металлах в процессе различных обработок, в том числе термической обработки.

Определить движение, размножение и плотность дислокаций (с использованием электронных микроскопов).

Читайте также:  Эксплуатация автомобиля при жарких температурах

Для изучения кристаллической структуры металлических материа-

лов используется рентгеноструктурный анализ (РСА).

В основе этого метода лежит взаимодействие рентгеновского излучения с электронами металла, в результате которого возникает дифракция рентгеновских лучей (длина волны 0,02 – 0,2 нм).

Кроме того метод РСА применяется для распознавания фаз и частиц по их кристаллоструктурным параметрам. Для проведения рентгеноструктурного анализа используются рентгеновские камеры и дифрактометры.

Исследование структуры металлических материалов различными методами позволяет изучить внутреннее строение материалов, процессы превращения, происходящие в структуре во время внешних обработок. Такие исследования являются наиважнейшими при выборе материалов, так как именно структура металлов и сплавов определяет и обуславливает свойства материалов.

Итак: свойства материалов зависят от структуры. Нельзя изменить свойства, не изменяя структуру.

Изменяя состав сплава, изменяется его структура, а значит и свойства.

Поэтому осуществляя правильный выбор материалов для работы в тех или иных условиях, необходимо изучать взаимосвязь между составом, структурой и свойствами материала.

СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ.

Все свойства металлов и сплавов принято подразделять на группы: физические, химические, технологические, механические и эксплуатационные.

Физические свойства определяют поведение металлических материалов в тепловых, электромагнитных, радиационных полях. К физическим свойствам относятся плотность, температура плавления, теплоемкость, теплопроводность, электропроводность, магнитные характеристики, термическое расширение.

Химические свойства характеризуют способность материалов вступать в химическое взаимодействие с другими веществами и химическими элементами, а также способность металлов и сплавов сопротивляться воздействию агрессивных сред, в том числе окислению.

Технологические свойства характеризуют способность материалов подвергаться холодной и горячей обработке, в том числе при обработке резанием, ковке, сварке, литье. К технологическим свойствам относятся обрабатываемость резанием, свариваемость, ковкость, литейные свойства (жидкотекучесть – способность жидкого металла заполнять литейную форму; усадка – уменьшение объема металла при переходе из жидкого состояния в твердое; ликвация – химическая неоднородность в отливках; склонность к образованию трещин – вероятность образования литейных трещин и пор в процессе затвердевания в литейной форме).

К механическим свойствам относятся твердость, прочность, пластичность, упругость, вязкость.

Эксплуатационные свойства характеризуют поведение материала в заданных рабочих условиях. К эксплуатационным свойствам относятся жаропрочность, жаростойкость, хладноломкость, усталость, износостойкость.

Для выбора материала и оценки его длительной работоспособности и на-

дежности наиболее важными являются механические и эксплуатационные свойства. Поэтому именно эти группы свойств и методы их определения будут рассмотрены подробно.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Многообразие условий службы и обработки материалов определяет необходимость проведения большого числа механических испытаний с целью получения целого комплекса значений механических свойств.

В зависимости от способа нагружения образца различают статические, динамические и циклические испытания.

Рассмотрим основные механические свойства и их количественные характеристики.

Твердость – свойство материала сопротивляться воздействию внешних нагрузок при непосредственном соприкосновении.

Все методы измерения твердости имеют одинаковый принцип:

вдавливание в поверхность образца инородного тела (индентора) различной формы, размера с различной нагрузкой.

Различают следующие методы определения твердости:

Метод Бринелля (индентор – стальной шарик);

Метод Роквелла (индентор – алмазный конус или стальной шарик);

Метод Виккерса (индентор – алмазная пирамидка).

Схемы этих методов приведены на рис. 4.1.

Рис. 4.1. Схема определения твердости:

а) – по Бринеллю; 6) – по Роквеллу; в) – по Виккерсу

Испытание по методу Бринелля (рис. 4.1, а) состоит из вдавливания в

испытуемое тело стального шарика диаметром D под действием постоянной нагрузки Р ( Р=1000 кг — для цветных металлов; Р—3000 кг — для черных металлов) и измерении диаметра отпечатка d на поверхности образца. Число твердости по Бринеллю НВ определяется величиной нагрузки Р, деленной на сферическую поверхность отпечатка. Чем меньше диаметр отпечатка, тем выше твердость металла. На практике твердость определяют не по формулам, а по специальным таблицам, исходя из диаметра отпечатка d.

Твердость по Бринеллю обозначается НВ, где Н – твердость, В – метод Бринелля. Твердость по Бринеллю измеряется в МПа.

Хладноломкость

Хладноломкость — Термином этим обозначается недостаток, свойственный некоторым сортам ковкого железа (а также нек. др. металлов) и состоящий в склонности металла растрескиваться и ломаться при холодной механической его обработке. Недостаток этот не мешает, однако же, железу беспрепятственно выносить различные механические формоизменения в нагретом состоянии, коваться, свариваться и т. д. Свойство X. вызывается в железе посторонними примесями, главным образом, примесью фосфора, сурьмы, мышьяка и вольфрама, а отчасти также серы, меди, цинка и хрома. Из этих примесей преобладающее влияние оказывает фосфор. Влияние его проявляется тем сильнее, чем богаче металл углеродом. Поэтому, напр., в богатой углеродом твердой тигельной стали увеличение примеси фосфора на несколько тысячных долей процента уже значительно усиливает X., между тем, как в мягком железе даже колебания в содержании фосфора в несколько сотых процента не оказывают заметного влияния на вязкость, т. е. не усиливают X. Свойство X. проявляется сильнее в литом железе, нежели в сварочном. В литом железе вызывают X. уже такие примеси фосфора, которые оказываются еще совершенно безопасными для сварочного. Так, литое железо, если оно предназначается для приготовления изделий, долженствующих отличаться крепостью, не должно содержать в себе фосфора свыше 0,1%; примесь фосфора в 0,2% допускается лишь в литом железе, назначающемся для неответственных, в смысле крепости поделок. Между тем, как сварочное железо, при содержании фосфора в 0,3 и даже 0,4%, хотя уже проявляет признаки X., но еще может обрабатываться без особенных затруднений. С содержанием фосфора 0,25—0,30% оно иногда еще может коваться на гвозди и тянуться в проволоку (то и другое в холодном состоянии). Точные безопасные пределы содержания фосфора, не вызывающие еще в железе X., установлены быть не могут, так как, во-первых, на это свойство могут влиять одновременно и другие примеси, а во-вторых, свойство это немало зависит и от способа обработки, которым сырые болванки пудлингового железа превращаются в полосы сортового железа. Чем дольше железо подвергается горячей проковке, тем более исчезает его кристаллическое сложение и тем более ослабевает склонность его к X. при одном и том же содержании фосфора. Поэтому, сравнивая на X. два различных сорта железа, можно получить надежные выводы лишь в том только случае, когда сравниваемые полосы имеют одинаковые поперечные сечения и получены одним и тем же числом последовательных механических операций. Сурьма и мышьяк сильно увеличивают X. железа, но естественная примесь этих тел в железе настолько невелика, что не вызывает заметных проявлений этого свойства. Что касается вольфрама, который вводится в углеродистое железо с целью повысить его твердость (при изготовлении инструментальной, так назыв. “вольфрамовой” стали), то влияние его выражается нередко весьма интенсивно, и с таким металлом в холодном состоянии приходится обращаться весьма осмотрительно. Умеренная примесь марганца ослабляет вредное влияние фосфора, т. е. несколько понижает X. железа и стали. Степень X. железа измеряется довольно точно числом ударов, которое в состоянии вынести, не ломаясь, железная полоса. Так, фосфористые сорта некоторых английских марок (например стаффордширское железо), содержащие до 0,25% фосфора, разлетаются нередко при первом же ударе, бедные же фосфором сорта железа (например шведское железо), с содержанием не свыше 0,02% фосфора, выдерживают, не ломаясь, до 10 ударов. Удары производятся молотом или падающим грузом по подпертой по концам полосе или бросанием ее на наковальню. Внешние признаки хладноломкого железа суть: белесоватый цвет, сильный блеск и чешуйчатое сложение. Будучи пригодно на кузнечные поделки, хладноломкое железо совершенно не годится на мостовые и т. п. сооружения, долженствующие подвергаться ударам и сотрясениям при низких температурах.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб. Брокгауз-Ефрон.

Читайте также :

Хламидомонады Хламидомонады (Chlamydomonadeac) — микроскопически малые, одноклеточные подвижные водоросли, являющиеся очень часто, особенно же весной и осенью, причиной равномерной зеленой окраски стоячих.

Хламидоспоры Хламидоспоры (Chlamydosporen) — покоящиеся стадии грибницы, предназначенные для размножения и заменяющие собой настоящие споры (см.). Для их образования содержимое клеток известных ветвей гр.

Хлаповский Хлаповский (Дезидерий) — известный польский генерал и агроном (1788—1880). Изучал военное искусство в Берлинской артиллерийской академии. Когда в 1806 г. стала близиться война Пруссии с Напо.

Ссылка на основную публикацию