Электромагнитные муфты

Электромагнитные муфты

Электромагнитная муфта по принципу действия напоминает асинхронный двигатель, в то же время отличаясь от него тем, что магнитный поток в ней создастся не трехфазной системой, а возбуждаемыми постоянным током вращающимися полюсами.

Электромагнитные муфты применяют для замыкания и размыкания кинематических цепей без прекращения вращения, например в коробках скоростей и передач, а также для пуска, реверсирования и торможения приводов станков. Применение муфт позволяет разделить пуск двигателей и механизмов, уменьшить время пускового тока, устранить удары как в электродвигателях, так и в механических передачах, обеспечить плавность разгона, устранить перегрузки, проскальзывания и др. Резкое уменьшение пусковых потерь в двигателях снимает ограничение по допустимому числу включений, что очень важно при цикличной работе двигателя.

Электромагнитная муфта является индивидуальным регулятором скорости и представляет собой электрическую машину, служащую для передачи вращающего момента от ведущего вала к ведомому при помощи электромагнитного поля, и состоит из двух основных вращаюших частей: якоря (в большинстве случаев представляет собой массивное тело) и индуктора с обмоткой возбуждения. Якорь и индуктор механически жестко не связаны между собой. Как правило, якорь соединяется с приводным двигателем, а индуктор — с рабочей машиной.

При вращении приводным двигателем ведущего вала муфты в случае отсутствия тока в обмотке возбуждения индуктор, а вместе с ним и ведомый вал остаются неподвижными. При подаче постоянного тока в обмотку возбуждения в магнитной цепи муфты (индуктор — воздушный зазор-якорь) возникает магнитный поток. При вращении якоря относительно индуктора в первом наводится ЭДС и возникает ток, взаимодействие которою с магнитным полем воздушного зазора обусловливает появление электромагнитного вращающего момента.

Электромагнитные индукционные муфты можно подразделить по следующим признакам:

по принципу вращающего момента (на асинхронные и синхронные);

по характеру распределения магнитной индукции в воздушном зазоре;

по конструкции якоря (с массивным якорем и с якорем, имеющим обмотку типа беличьей клетки);

по способу подачи питания в обмотку возбуждения; по способу охлаждения.

Наибольшее распространение получили муфты панцирного и индукторного типа благодаря простоте конструкции. Такие муфты состоят в основном из зубчатого индуктора с обмоткой возбуждения, насаженного на один вал с токопроводящими контактными кольцами, и гладкого цилиндрического массивного ферромагнитного якоря, соединенного с другим валом муфты.

Устройство, принцип действия и характеристики электромагнитных муфт.

Электромагнитные муфты, применяемые для автоматического управления, разделяются на муфты сухого и вязкого трения и муфты скольжения.

Муфта сухого трения производит передачу мощности с одного вала на другой через диски трения 3. Диски имеют возможность перемещаться по шлицам оси вала и ведомой полумуфты. При подаче тока в обмотку 1 якорь 2 сжимает диски, между которыми возникает сила трения. Относительные механические характеристики муфты приведены на рис 1, б.

Муфты вязкого трения имеют постоянный зазор δ между ведущей 1 и ведомой 2 полумуфтами. В зазоре с помощью обмотки 3 создаётся магнитное поле, которое воздействует на заполнитель (ферритовое железо с тальком или графитом) и образует элементарные цепочки магнитов. При этом заполнитель как бы схватывает ведомую и ведущую полумуфты. При выключении тока магнитное поле пропадает, цепочки разрушаются и полумуфты проскальзывают относительно друг друга. Относительная механическая характеристика муфты приведена на рис. 1, д. Эти электромагнитные муфты позволяют плавно регулировать скорость вращения при больших нагрузках на выходном валу.

Электромагнитные муфты: а – схема муфты сухого трения, б – механическая характеристика муфты трения, в – схема муфты вязкого трения, г – схема схватывания ферритового наполнителя, д – механическая характеристика муфты вязкого трения, е – схема муфты скольжения, ж – механическая характеристика муфты скольжения.

Муфта скольжения состоит из двух зубовидных полумуфт (см. рис. 1, е) и катушки. При подаче тока в катушку образуется замкнутое магнитное поле. При вращении муфты проскальзывают одна относительно другой, в результате чего образуется переменный магнитный поток, это и является причиной возникновения э. д. с. и токов. Взаимодействие образовавшихся магнитных потоков приводит во вращение ведомую полумуфту.

Характеристика фрикционной полумуфты приведена на рис. 1, ж. Основное назначение таких муфт – создавать наиболее благоприятные условия пуска, а также сглаживать динамические нагрузки при работе двигателя.

Электромагнитные муфты скольжения имеют ряд недостатков: низкий коэффициент полезного действия при малых скоростях, малый передаваемый момент, низкая надежность при резком изменении нагрузки и значительная инертность.
На рисунке ниже приведена принципиальная схема управления муфтой скольжения при наличии обратной связи по скорости с помощью тахогенратора, связанного с выходным валом электропривода. Сигнал с тахогенератора сравнивается с задающим сигналом, и разность этих сигналов подается на усилитель У, с выхода которого питается обмотка возбуждения муфты ОВ.

П ринципиальная схема управления муфты скольжения и искусственные механические характеристики при автоматическом регулировании

Эти характеристики располагаются между кривыми 5 и 6, которые соответствуют практически минимальному и номинальному значениям токов возбуждения муфты. Однако увеличение диапазона регулирования частоты вращения привода связано со значительными потерями в муфте скольжения, которые в основном складываются из потерь в якоре и в обмотке возбуждения. Причем потери якоря, особенно с увеличением скольжения, значительно преобладают над другими потерями и составляют 96 – 97 % максимальной мощности, передаваемой муфтой. При постоянном моменте нагрузки частота вращения ведущего вала муфты постоянна, т. е. n = const, ω = const.

У электромагнитных порошковых муфт соединение между ведущей и ведомой частями осуществляется за счет повышения вязкости смесей, заполняющих зазор между поверхностями сцепления муфт при увеличении магнитного потока в этом зазоре. Главным компонентом таких смесей являются ферромагнитные порошки, например карбонильное железо. Для устранения механического разрушения частиц железа из-за сил трения или их слипания добавляют специальные наполнители – жидкими (синтетические жидкости, индустриальные масло или сыпучими (оксиды цинка или магния, кварцевый порошок). Такие муфты обладают высокой скоростью срабатывания, однако эксплуатационная надежность их является недостаточной для широкого применения в станкостроении.

Рассмотрим одну из схем плавного регулирования скорости вращения исполнительным двигателем ИД, работающего через муфту скольжения М на исполнительный механизм ИМ.

Схема включения муфты скольжения для регулирования скорости вращения исполнительного механизма

При изменении нагрузки на валу исполнительного механизма выходное напряжение тахогенератора ТГ также будет изменяться, в результате чего разность магнитных потоков Ф1 и Ф2 электромашинного усилителя будет увеличиваться или уменьшаться, изменяя тем самым напряжение на выходе ЭМУ и величину силы тока в обмотке муфты.

Электромагнитные муфты ЭТМ

Электромагнитные муфты трения ЭТМ (сухие и масляные) позволяют производить пуск, торможение и реверсирование за время до 0,2 с, а также осуществлять десятки включений в течение 1 с. Управление муфтами и их питание осуществляется постоянным током напряжением 110, 36 и 24 В. Мощность управления составляет не более 1 % мощности, передаваемой муфтой. По конструкции муфты бывают одно- и многодисковые, нереверсивные и реверсивные.

Электромагнитные муфты серии ЭТМ с магнитопроводящими дисками выполняют контактного исполнения (ЭТМ2), бесконтактные (ЭТМ4) и тормозные (ЭТМ6). Муфты с контактным токоироводом отличаются невысокой надежностью из-за наличия скользящего контакта, поэтому в наиболее качественных приводах используют электромагнитные муфты с неподвижным токопроводом. Они имеют дополнительные воздушные зазоры.

Муфты бесконтактного исполнения отличаются наличием составного магнитопровода, образуемого корпусом и катушкодержателем, которые разделены так называемыми балластными зазорами. Катушкодержатель смонтирован неподвижно, при этом исключаются элементы контактного токопровода. За счет зазора снижается теплопередачи от фрикционных дисков к катушке, что повышает надежность муфты в тяжелых режимах работы.

В качестве ведущих целесообразно использовать муфты исполнения ЭТМ4, если это допустимо по условиям встройки, а в качестве тормозных – муфты исполнения ЭТМ6.

Муфты ЭТМ4 надежно работают при высокой частоте вращения и частых включениях. Эти муфты менее чувствительны к загрязнению масла, чем ЭТМ2, наличие у которых твердых частиц в масле может вызвать абразивный износ щеток, поэтому муфты ЭТМ2 могут применяться, если указанные ограничения отсутствуют и монтаж муфт ЭТМ4 по условиям конструкции узла затруднителен.

В качестве тормозных необходимо применять муфты исполнения ЭТМ6. Муфты ЭТМ2 и ЭТМ4 не следует применять для торможения по «обращенной» схеме, т. е. при вращающейся муфте и неподвижно закрепленном поводке. Для выбора муфт необходимо оценить: статический (передаваемый) момент, динамический момент, время переходного процесса в приводе, средние потери, единичную энергию и остаточный момент покоя.

Электромагнитные муфты – классификация и принцип работы

Электомагнитные муфты для своей работы используют свойства магнитного поля и электрический ток, то есть к ним обязательно подводится электричество. И это их принципиальное отличие от других видов, ниже написано что они могут передавать вращение и без тока, но тогда наоборот – она разъединяется при подаче электричества.

Разновидности электромагнитных муфт:

Зубчатые муфты:

Электромагнитные зубчатые муфты передают вращение при помощи пары зубчатых колец, сцепляемых и разъединяемых при помощи магнитного поля, генерируемого катушкой. Также существует исполнение муфт, которые передают вращение без электрического тока, при подаче напряжения магнитное поле разъединяет зубчатые венцы и момент не передается.
Зубчатые муфты могут передавать большие моменты.
В разъединенном состоянии зубчатые венцы не контактируют, это позволяет исключить остаточные моменты. В отличие от фрикционных муфт , зубчатые могут эксплуатироваться как в сухом так и во влажном окружении.

  • с постоянным полем

Работают на основе магнитной катушки, размещенной в центре муфты, два провода от катушки выводятся через паз на передней поверхности. Генерируемое поле соединяет зубчатые венцы. Между венцами установлены пружины,
которые сжимаются при подаче питания. При отключении питания пружины отжимают подвижное зубчатое кольцо, рассоединяя валы.
При “сухом” применении необходимо обеспечить хорошую вентиляцию. Если муфты используются в ограниченном объеме без вентиляции либо работают длительное время, тепло, вырабатываемое катушкой может повредить чувствительные к нагреву элементы механизма.

  • с токосъемными кольцами

Данный тип муфт представляет собой электромагнитные муфты с отрицательным проводом соединенным с “массой” механизма. Положительный провод подключается к муфте при помощи щетки через токосъемное кольцо. Катушка генерирует магнитное поле, которое притягивает друг к другу зубчатые венцы сжимая расположенные между ними пружины. При
отключении питания пружины отжимают подвижное зубчатое кольцо, рассоединяя валы.

  • разъединяющие муфты с закрепленным корпусом катушки

Передают вращение при отсутствии магнитного поля, т .е. при отключенной катушке, питание к ней подводится по двум проводам. Сжатие зубчатых венцов между собой осуществляется при помощи пружины. Для быстро и надежного срабатывания данного типа муфт рекомендуется в течение 1 секунду подавать напряжение в два раза превышающее номинальное. Для удержания в рассоединенном состоянии достаточно напряжения в 50% от номинального. Таким образом при длительном режиме работы снижается энергопотребление и тепловыделение.

  • разъединяющие с токосъемным кольцом и пружиной

Передают вращение при отключенной катушке. Сжатие зубчатых венцов между собой осуществляется при помощи пружины.
Отрицательный провод катушки соединен с “массой” механизма, положительный провод
подключен к токосъемному кольцу . Питание подается через щетку . При подаче питания зубчатые венцы рассоединяются, сжимается пружина между ними. Для надежного срабатывания данного типа муфт рекомендуется в течение 1 секунду подавать напряжение в
два раза превышающее номинальное. Для удержания муфты в рассоединенном состоянии
достаточно напряжения в 50% от номинального. Таким образом при длительном режиме
работы снижается энергопотребление и тепловыделение. (Схема А)

  • зубчатые тормоза (без токосъемного кольца, подключается к источнику питания по двум проводам)

По устройству сходны с муфтами с токосъемными кольцами, однако этих колец нет, муфта подключается к источнику питания по двум проводам. Правильное применение электромагнитных тормозов – удерживание в неподвижном сцепленном состоянии обеих частей муфты остановленных предварительно.

Многодисковые муфты и тормоза:

Передают крутящий момент через пакет дисков. Электромагнитная катушка генерирует магнитное поле, которое притягивает пластину ,
сжимающую пакет дисков. Пакет состоит из чередующихся внутренних и наружных дисков.
Внутренние диски имеют шлицы и установлены на шлицевом валу , внешние диски имеют
проточки, внешние диски установлены в шлицы корпуса муфты. Волнообразная форма
дисков облегчает рассоединение пакета при отключении муфты и уменьшает остаточный
момент . Многодисковые муфты требуют постоянной смазки.

  • с токосъемным кольцом

Вращение передается при подаче напряжения на катушку. Отрицательный провод питания подключается к “массе” механизма, положительный
провод подключается к щетке, передающей ток на токосъемное кольцо. Катушка создает магнитное поле стягивающее между собой диски муфты и притягивающее прижимное кольцо. Когда электричество выключается благодаря волнообразной форме диски рассоединяются.Устанавливаются на шлицевой вал или со шпонкой.

Многодисковые тормоза сходны по конструкции с муфтами с вращающейся катушкой, Подвод напряжения осуществляется по проводу, корпус крепится.

  • с закрепленным корпусом

Подключаются при помощи проводов, клемм, разъемов. Катушка генерирует поле, сжимающее пакет дисков. При сжатии диски становятся плоскими, однако при отключении питания диски снова становятся волнистыми, что облегчает рассоединение муфты.

Читайте также:  Электронный блок управления

Однодисковые муфты и тормоза

Разработаны для применения в сухих условиях. Фактически – они используют принцип трения, похожие на муфты сцепления в автомобилях. При подаче напряжения якорь притягивается к ротору поверхности трения
соприкасаются , обеспечивая передачу вращения. При отключении питания сжата пружина
разводит якорь и ротор, вращение не передается

Просмотров: 13260 | Дата публикации: Пятница, 01 ноября 2013 06:21 |

Электромагнитная муфта

Важным элементом различных конструкций можно назвать муфту. Современные технологические возможности позволили получить более сложные устройства, которые характеризуются более привлекательными эксплуатационными характеристиками. Электромагнитные муфты можно назвать современным предложением. Они устанавливаются на современных автомобилях и многих других устройствах. Довольно сложная конструкция и непростой принцип действия определяет то, что нужно четко разбираться в подобном устройстве для обеспечения его качественного обслуживания. Рассмотрим все особенности данного вопроса подробнее.

Что такое электромуфта?

Электромагнитная муфта представлена специальным устройством для решения самых различных задач, большинство из которых связано с соединением и разъединением пары, находящейся в зацеплении. Производятся электромагнитные муфты для станков и других узлов транспортных средств или тепловозов. При этом выделяют несколько основных разновидностей подобных конструкций:

  1. Механизмы фрикционного типа конусные и дисковые.
  2. Электромагнитная муфта зубчатого типа считается специфическим вариантом исполнения, так как рабочая часть представлена сочетанием различных зубьев.
  3. Порошковая электромагнитная муфта является современным вариантом исполнения, так как она обеспечивает осевое смещение при необходимости.

Электромуфта является промежуточным соединительным элементом. Принцип действия заключается в использовании основных свойств электрического тока для генерации электродвижущей силы.

При этом он может выполнять самые различные функции, к примеру, защиту основного устройства от перегрева или управление.

Принцип работы муфты электромагнитной

Электромагнитная муфта может обладать самой различной конструкцией, но также выделяют и классический вариант исполнения. Его особенности заключаются в следующем:

  1. Основными элементами можно назвать два ротора, один из которого представлен железным диском с тонким концевым выступом.
  2. Внутренняя часть оснащается полюсными наконечниками, которые обеспечивают радиальное смещение. Для передачи тока создается обмотка, она подключается к источнику питания через контактные кольца. Часть этого элемента располагается на валу.
  3. Рассматриваемая муфта магнитная имеет второй ротор, который представлен цилиндрическим валом со специальными пазами, расположены параллельно основной оси. Они создаются для того, чтобы можно было вставлять специальные бруски с полюсными наконечниками.

Рассматриваемая муфта на постоянных магнитах обладает довольно сложной конструкцией, за счет чего обеспечивается точная и надежная работа. Принцип действия устройства следующий:

  1. При появлении тока возникает электромагнитное поле, которое пересекается с проводником и начинает взаимодействовать.
  2. Подобное совмещение становится причиной возникновения электродвижущей силы. Ее может быть вполне достаточно для перемещения подвижного элемента с учетом преодоления определенного усилия.
  3. При изготовлении этой детали применяется брусок меди, который и обеспечивает замыкание цепи. По ним проходит ток, за счет которого и появляется электромагнитная сила.
  4. Возникающие поля обеспечивают ведомого ротора за ведущим, при этом запоздание несущественное.

Подобный принцип работы применяется при создании самых различных механизмов. При этом устройство станка позволяет прекращать передачу вращающего момента в течение нескольких долей секунды, что и определяет его распространение.

Размагничивание электромагнитной муфты происходит за счет отключение источника питания. При этом особые свойства материала определяют то, что магнитное поле пропадает практически сразу, за счет чего происходит обратное движение подвижного элемента. Используемые обмотки электромагнита рассчитаны на достаточно большое количество таков сцепления и расцепления ведущего элемента с ведомым.

При рассмотрении того, что такое электромагнитная муфта также нужно уделить внимание свойств применяемых материалов при ее изготовлении.

Только специальные сплавы обладают магнитными свойствами, которые обеспечивают требуемые условия эксплуатации.

Передача момента на муфту может проводится от электрического двигателя и других подобных элементов. Размеры всех габаритов в большинстве случаев стандартизируются, однако есть возможность заказать производство механизма под заказ. Классификация, как правило, проводится по области применения и многим другим признакам.

Классификация электромуфт

В большинстве случаев электромуфты классифицируются по тому, в какой области они применяются. Чаще всего применяется электромагнитная фрикционная муфта. Она обладает следующими свойствами:

  1. Устройство может применяться для снижения вероятности воздействия импульсных нагрузок.
  2. На холостом ходу конструктивные особенности определяют незначительные потери. Этот момент определяет то, что основные элементы не нагреваются при эксплуатации.
  3. Есть возможность провести быстрый пуск механизма даже в случае, если оно находится под большой нагрузкой.

Рассматриваемый тип механизма делится на несколько основных типов:

Довольно част встречается муфта электромагнитная тормозная, которая может снизить количество оборотов при работе.

Вариант исполнения кондиционерного компрессора представлена в виде узла, который состоит из следующих элементов:

  1. Катушки электромагнитного типа. Она изготавливается при применении специальных сплавов, которые характеризуются определенными свойствами. Катушка требуется для непосредственной генерации электромагнитного поля.
  2. Пластин прижимного типа. Этот элемент конструкции должен характеризоваться высокой прочностью.
  3. Шкива, который передает усилие от электрического двигателя. Привод подобного типа получил довольно широкое распространение, так как он обеспечивает защиту устройства от перегрева при большой нагрузке. За счет смены шкивов есть возможность регулировать количество оборотов на выходе.

В рассматриваемом случае на катушку подается электричество, которое образует электромагнитное поле. За счет этого происходит притягивание прижимной пластины к шкиву. Подобное перемещение дает свободу валу, и механизм начинает работать.

Компрессорные установки получили весьма широкое распространение. Именно поэтому нужно уделять внимание следующим дефектам:

  1. Довольно часто встречается ситуация, когда подшипник шкива деформируется. В этом случае достаточно провести замену элемента.
  2. Прижимная пластина изготавливается из тонкого метала, поэтому на момент эксплуатации она может деформироваться. Кроме этого, проблема возникает в случае неправильной установки зазора.
  3. Встречается ситуация сгорания самой муфты. Она чаще всего связана с высоким напряжением, которое подается на катушку.

Развитие современных технологий определило то, что в автомобилях проводится установка электромагнитной муфты сцепления. Она делиться на несколько различных типов в зависимости от привода:

  1. Гидравлический. Этот вариант исполнения характеризуется тем, что передача усилия осуществляется за счет жидкости в системе. Масло и вода хорошо подходят для передачи усилия. Однако, гидравлический привод на сегодняшний день характеризуется относительно низкой надежностью.
  2. Механический. Подобное устройство характеризуется тем, что передача усилия проводится за счет сочетания различных элементов. Примером можно назвать звездочки, шестерни и другие детали.
  3. Муфта сцепления электромагнитная.

Наиболее распространен последний тип механизма. При этом он также классифицируется на несколько основных типов:

  1. По показателю трения выделяют мокрые и сухие. В последнее время большое распространение получили варианты исполнения, которые могут работать только при добавлении масла.
  2. Классификация проводится и по режиму включения: непостоянные и постоянные.
  3. Выделяют муфты с одним или несколькими ведомыми дисками. Выбор проводится в зависимости от того, какие требуются эксплуатационные характеристики.
  4. По виду управления также выделяют несколько основных видов механизма. Примером можно назвать механический, гидравлический и комбинированный.

В отдельную группу включены электромагнитные порошковые муфты. Они представлены сочетанием веществ, которые при взаимодействии могут обеспечивать прочную связь.

Этот современный вариант исполнения встречается в случае, когда нужно обеспечить смещение соединяемых элементов относительно друг друга на момент эксплуатации.

Элементы защиты, электромагнитные фрикционные многодисковые муфты

Подобная электромуфта чаще всего устанавливается на станках с блоком числового программного управления. К достоинствам отнесем следующие моменты:

  1. Компактность. За счет этого есть возможность проводить установку электромагнитной муфты в современные устройства. С каждым годом размеры устройства существенно уменьшаются, за счет чего расширяется область применения.
  2. Надежность. Этот параметр считается наиболее важным при выборе практически любой муфты. Применение специальных материалов и контроль качества на всех этапах производства позволяет достигнуть наиболее высокого показателя надежности.
  3. Малогабаритность. Этот параметр определяет легкость в транспортировке и многие другие положительные параметры.

Этот вариант исполнения характеризуется довольно высокими эксплуатационными характеристиками, за счет которой он получил широкое распространение. Основными частями конструкции можно назвать:

  1. Корпус. В большинстве случаев он изготавливается при применении стали, которая характеризуется повышенной устойчивостью к воздействию окружающей среды. Предназначение корпуса заключается в защите внутренних элементов.
  2. Катушка. Этот элемент предназначен для непосредственного создания электромагнитного поля, за счет которого и происходит смещение основных элементов. Катушка рассчитана на воздействие определенного электрического тока, слишком высокое напряжение оказывает негативное воздействие.
  3. Группа дисков фрикционного типа. При изготовлении пакета фрикционных дисков применяется специальный сплав, характеризующийся определенными магнитными свойствами.
  4. Поводок и нажимной диск.
  5. На корпусе есть насаженное кольцо, изготавливаемый из изоляционного материала.
  6. Ток подается при помощи контактной щетки. Именно она в большинстве случаев выходит из строя на момент эксплуатации механизма.

Исключить вероятность возникновения короткого замыкания можно при помощи вырезанных отверстий в дисках. На момент подачи электрического тока создается электромагнитное поле, которое замыкается при помощи фрикционного диска. Именно за счет этого создается притягивающая сила, за которой происходит смещение основной части.

Встречается несколько вариантов исполнения подобных конструкций. Примером можно назвать устройство с вынесенным и магнитопроводящим диском.

Преимущество соединений при помощи электромуфт

Рассматриваемое устройство получило весьма широкое распространение. Это можно связать с тем, что оно обладает достаточно большим количеством преимуществ, которые должны учитываться. Наиболее важными считаются приведенные ниже:

  1. Надежность. При подаче электрического тока устройство проводит разъединение отдельных элементов в течение короткого промежутка времени. При этом электромагнитное поле не подвержено воздействию окружающей среды, поэтому существенных проблем при работе, как правило, не возникает.
  2. Сохранение основных свойств на протяжении длительного периода. Важным критерием выбора подобных устройств можно назвать именно эксплуатационный срок. За счет применения специальных материалов этот показатель в рассматриваемом случае существенно расширен.
  3. Срабатывание в течение нескольких долей секунд. Подобный результат свойственен относительно небольшому количеству устройств рассматриваемой категории. Время срабатывания – параметр, который учитывается при выборе муфты.
  4. Возможность исполнения для достижения самых различных целей, к примеру, защиты устройства или дистанционное управление.
  5. Компактность и небольшой вес. Эти параметры считаются также довольно важными, так как слишком большой вес оказывает нагрузку на основную конструкцию. Компактность позволяет проводить встраивание устройства в самые различные конструкции.

Однако есть несколько существенных недостатков, которые должны учитываться. Примером можно назвать то, что устройство стоит достаточно дорого, а обслуживание должно проводится исключительно специалистом. Кроме этого, эксплуатация при несоблюдении основных рекомендаций может стать причиной повышенного износа. Не стоит забывать о том, что для работы устройства требуется электрический ток, который и обуславливает появление требуемого электромагнитного поля.

Область применения

Устройство получило весьма широкое применение, так как обеспечивает соединение нескольких элементов и их разъединения при необходимости. Область применения следующая:

  1. Автомобили и другие транспортные средства имеют узлы, которые снабжаются электромагнитной муфтой.
  2. В последнее время все чаще устройство устанавливается в станки с ЧПУ. Это связано с тем, что к их работе предъявляются требования по высокой точности работы.
  3. Было разработано несколько типов различных устройств, которые могут выступать в качестве промежуточного элемента. Применять муфты могут для достижения самых различных целей, к примеру, защиты устройства от перегрева путем отключения привода при срабатывании датчика.

В целом можно сказать, что использование электрического тока для генерации сигнала позволяет существенно расширить область применения устройства. Это связано с возможность передачи сигнала от различных датчиков.

В заключение отметим, что электромагнитные муфты выпускают самые различные организации. Рекомендуется уделять внимание продукции исключительно известных производителей, так как заявленные параметры соответствуют реальным. При изготовлении могут применяться самые различные материалы, уделяется внимание защите от воздействия окружающей среды.

Лекция 7.3. Электромагнитные муфты

Во многих электрических системах управления исполнительный элемент системы – электрический двигатель, соединяется с регулирующим органом производственного механизма через специальное соединительное устройство, которое называют муфтой. Муфта служит для передачи механической энергии с одного вала на другой.

Существует большое количество конструкций муфт, основанных на различных физических принципах.

На рис.7.4 показана схема соединения двигателя с рабочим механизмом с помощью муфты. Муфта состоит из двух основных частей: ведущей 1, на которую поступает мощность от приводного двигателя, и ведомой 2, мощность с которой передается регулирующему органу. В ряде случаев необходимо жестко связать рабочий механизм с двигателем. Тогда ведомая и ведущая части муфты соединены без относительного перемещения. Такие муфты называются постоянно соединительными.

Широкое применение в системах автоматизации и управления получили муфты с электромагнитным управлением, когда соединение ведущей и ведомой частей происходит не жестко механически, а за счет упругих сил электромагнитного поля. Это позволяет подключать двигатель к механизму без механических ударов; осуществлять передачу движения в изолированных друг от друга средах (например, ввод движения в вакуумную среду), а в ряде случаев и регулировать частоту вращения в системах управления.

Читайте также:  Эксцентриковый самоцентрирующий патрон

В зависимости от связи ведущей и ведомой частей все муфты можно разделить на два класса: муфты с механической связью; индукционны емуфты т.е. со связью через магнитное поле.

К первой группе относятся:

а) Фрикционные, или муфты трения, у которых ведущая и ведомая части прижимаются друг к другу электромагнитными силами. Эти муфты выполняются с одним или несколькими дисками, с цилиндрическими или коническими поверхностями трения.

б) Порошковые, в которых соединение между частями муфты происходит за счет намагничивания порошковой ферромагнитной смеси, заполняющей зазор между частями муфты.

в) Зубчатые или кулачковые, у которых на ведущей и ведомой частях муфты имеются зубчики, с помощью которых при приложении электромагнитной силы осуществляется «геометрическое замыкание» (соединение) частей муфты.

Ко второй группе относятся:

а) Асинхронные или муфты скольжения, которые работают за счет сил электромагнитного воздействия, возникающих при вращении ведущей части муфты, имеющей катушку возбуждения, относительно ведомой части (принцип асинхронной машины).

б) Синхронные муфты с постоянными магнитами. Эти муфты имеют магнитопроводы с полюсами на обеих частях муфты. При прохождении тока через катушку возбуждения возникают силы магнитного притяжения между ведущей и ведомой частями (принцип синхронной машины с постоянными магнитами).

в) Гистерезисные муфты, в которых связь между ведущей и ведомой частями создается за счет явления гистерезиса при перемагничивании магнитотвердого материала (принцип синхронной гистерезисной машины).

Независимо от принципа действия любая из этих муфт является преобразователем механической мощности на входе в механическую мощность на выходе муфты.

В системах автоматизации и управления принципиально могут использоваться все отмеченные выше муфты. Принцип работы индукционных муфт мало отличается от принципа работы соответствующих электрических двигателей. Поэтому более подробно рассмотрим весьма широко распространенные электромагнитные фрикционные и ферропорошковые муфты с электромагнитным управлением.

Ферропорошковые муфты с электромагнитным управлением. Электромагнитная порошковая муфта позволяет осуществлять либо жесткое соединение ведущей и ведомой частей муфты, либо проскальзывание ведомой части относительно ведущей. Это дает возможность регулировать частоту вращения приводного механизма при неизменной частоте вращения приводного двигателя.

На рис.7.5 представлена конструктивная схема электромагнитной порошковой муфты. Ведущая 1 и ведомая 2 части муфты представляют собой стальные цилиндры и служат магнитопроводами. В кольцевом пазу ведомой части расположена обмотка возбуждения 3, которая через контактные кольца 4 и щетки 5 подключена к источнику постоянного тока U. Зазор между ведомой и ведущей частями муфты заполняется наполнителем 6, представляющим собой сухую или жидкую ферромагнитную смесь. Жидкая смесь состоит из ферромагнитного порошка и жидкой масляной основы. Соотношение между порошком и маслом обычно составляет 5:1. Сухая ферромагнитная смесь состоит также из ферромагнетика, а в качестве связующего вещества используются графит или тальк.

Принцип работы порошковой муфты заключается в следующем. При подаче постоянного напряжения U на обмотку возбуждения возникает ток, который создает поток возбуждения ?. Проходя через зазор поток намагничивает ферромагнетик. Намагниченные частицы ферромагнетика образуют магнитные цепочки, расположенные вдоль силовых линий магнитного поля. Эти цепочки соединяют силами притяжения ведущую и ведомую части муфты. Сила сцепления частей муфты и создаваемый электромагнитный момент тем больше, чем больше ток протекает через обмотку возбуждения порошковой муфты. При больших токах возбуждения наступает магнитное насыщение материала и постепенно прекращается нарастание сил сцепления, а следовательно, и электромагнитного момента. Таким образом, воздействуя электромагнитным полем на слой порошка, можно соединить ведущую и ведомую части муфты либо жестко, либо с проскальзыванием. Порошковые муфты по конструкции бывают не только цилиндрические, но и дисковые.

Электромагнитные фрикционные муфты. К управляемым муфтам с силовым замыканием механической связи относятся муфты трения, или фрикционные. Эти муфты допускают соединение двигателя с производственным механизмом во время движения (на ходу) и под нагрузкой. Конструкция таких муфт может быть выполнена с одним или несколькими дисками, с цилиндрическими или коническими поверхностями трения.

Принцип действия электромагнитных фрикционных муфт состоит в том, что две поверхности трения прижимаются друг к другу силой, создаваемой электромагнитом. Как правило, вращающий момент, передаваемый фрикционной муфтой, имеет постоянную величину и не регулируется изменением тока в обмотке управления. Коэффициент усиления по мощности таких муфт, т.е. отношение передаваемой мощности к мощности управления, достигает 30 и более.

Мощность управления фрикционных муфт зависит от коэффициента усиления по мощности. Обычно для муфт средней величины она составляет несколько десятков ватт, а это значит, что схемы управления такими муфтами могут быть осуществлены на современных интегральных схемах.

Не нашли то, что искали? Воспользуйтесь поиском:

21 Электромагнитные муфты

17. Электромагнитные муфты. Фрикционные, индукционные. Принцип действия, конструкция.

ЭЛЕКТРОМАГНИТНЫЕ МУФТЫ УПРАВЛЕНИЯ

Для регулирования частоты вращения, вращающего мо­мента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением. Эти муфты мож­но подразделить на индукционные и электромагнитные.

Индукционные муфты (рис. 17.1) по принципу действия аналогичны асинхронному двигателю с короткозамкнутым ротором. Приводной двигатель соединяется со сплошным якорем 1, ведомый вал связан с индуктором 2. Катушка возбуждения 4 создает постоянный магнитный поток 5, за­мыкающийся по якорю 1. При вращении якоря магнитное поле катушки индуктора пересекает цилиндрическое тело якоря, и в нем наводятся вихревые токи. Взаимодействие этих токов с магнитным полем создает силу, которая увле­кает индуктор в направлении вращения якоря. Материал якоря должен обладать малым удельным электрическим сопротивлением, что обеспечивает возникновение достаточ­но больших вихревых токов, и высокой магнитной проница­емостью для получения возможно больших значений магнитного потока.

Регулируя ток возбуждения Iв и тем самым меняя магнитное поле, можно плавно регулировать в широких преде­лах частоту вращения и передаваемый вращающий момент ведомого вала.

Рис. 17.1. Индукционная муфта:

7 — якорь; 2 — индуктор; 3 — магнитная система; 4 — катуш­ка возбуждения; 5—магнитный поток

На рис. 14.2 показаны механические характеристики ин­дукционной муфты. На этом рисунке Iв*= Iв/Iв.ном — ток возбуждения в относительных единицах; М* =М/Мном — передаваемый момент в относительных единицах, где Мном — номинальный момент муфты; Iв.ном — соответству­ющий ему номинальный ток возбуждения; п — частота вра­щения в процентах частоты вращения при отсутствии на ведомом валу нагрузки.

При увеличении момента нагрузки угловая скорость ве­домого вала уменьшается. При этом возрастают скольже­ние и токи, наводимые в якоре муфты. Увеличение токов в якоре увеличивает момент, развиваемый муфтой и пере­даваемый на ведомый вал.

Механические характеристики индукционной муфты су­щественно зависят от нагрузки. Поэтому для стабилизации скорости применяются специальные регулирующие устрой­ства.

Более широко применяются электромагнитные муфты, в которых используется электромагнитное усилие притяже­ния между ферромагнитными телами. Эти муфты удобны в эксплуатации, имеют малые габаритные размеры и небольшое время срабатывания, передают большие мощ­ности на валу при сравнительно малой мощности управле­ния. Ниже рассматриваются фрикционные, ферропорошковые и гистерезисные электромагнитные муфты.

Рис. 17.2. Механические характеристики индукционной муфты при раз­личном токе возбуждения

ЭЛЕКТРОМАГНИТНЫЕ ФРИКЦИОННЫЕ МУФТЫ

а) Принцип действия. Простейшая конструкция элект­ромагнитной фрикционной муфты представлена на рис. 14.3. Постоянное напряжение подводится к щеткам, скользящим по контактным кольцам 1, соединенным с выводами обмот­ки 2. Обмотка имеет цилиндрическую форму и окружена магнитопроводом ведущей части 3 муфты. Направляющая втулка 7 имеет выступ 6, который входит в паз 8 полумуф­ты 5, которая может перемещаться вдоль оси, оставаясь соединенной с валом 10.

В обесточенном состоянии пружина 9 упирается в на­правляющую втулку 7, жестко закрепленную на валу 10, и отодвигает подвижную часть полумуфты 5 вправо. При этом поверхности трения (диски 4) не соприкасаются и ве­домый вал 10 разобщен с ведущим валом П.

При подаче на обмотку управляющего напряжения воз­никает магнитный поток Ф. На полумуфты 3, 5, выполнен­ные из магнитомягкого материала, начинает действовать электромагнитная сила, притягивающая их друг к другу. Таким образом полумуфты и обмотка представляют собой электромагнит. Между дисками 4, жестко связанными с де­талями 3 и 5, возникает сила нажатия, обеспечивающая необходимую силу трения и их надежное сцепление.

На рис. 14.3,6 изображена поверхность трения. Элемен­тарный момент трения

где pyд — давление на поверхности трения, Па; kTP — коэф­фициент трения; R — текущий радиус поверхности трения, м.

Рис.17.3.Электромагнитная фрикционная муфта:

а–разрез муфты; б–поверхность трения
Коэффициенты трения для дисков из различных мате­риалов приведены

Коэффициенты трения Таблица 17.1.

Металлокерамический материал на медной

Металлокерамический материал на желез-

ной основе — сталь

Наиболее совершенны диски из металлокерамики. Металлокерамика на медной основе состоит из 68% меди, 8% олова, 7% свинца, 6% графита, 4% кремния и 7 % железа. Составляющие в порошкообразном состоянии прессуются при высоком давлении (сотни мегапаскалей) и затем спекаются при температуре 700—800 °С. Аналогично изготовляется металлокерамика на железной основе. Металлокерамические материалы имеют высокое значение kтр и допускают высокую рабочую температуру (до 200 °С).

Давление руд определяется износом поверхностей трения дисков. Для металлокерамических материалов оно состав­ляет 0,8—1, для сталей 0,4—0,6 МПа.

В процессе пуска момент, который должен быть передан муфтой, возрастает, так как кроме статического момента нагрузки Мн необходимо передать динамический момент Мдин. При этом проскальзывание (пробуксовка) поверхно­стей трения должно быть небольшим, иначе они могут вый­ти из строя из-за нагрева до высокой температуры. В режи­ме пуска

Мтр = Мн + Мдин = Ma + J= Мн kз (I7.2)

где J — момент инерции подвижных частей, кг-м 2 ; — уг­ловая частота вращения, 1/с; k3 — коэффициент запаса, учитывающий возрастание момента муфты при пуске. Зна­чения k3 для различных видов нагрузок приведены ниже:

Металлорежущие станки . . 1,25—2,5
Краны, подъемники . 3—5

Центробежные насосы . . . 2— 3

Мельницы, дробилки . 4,0

При большом передаваемом моменте для уменьшения габаритных размеров муфты применяется многодисковая система (рис. 17.4). Диски 6 связаны с ведущей частью муфты 5 и могут свободно перемещаться вдоль направляю­щих 7. Диски 8, связанные с электромагнитом ведомой ча­сти, также могут перемещаться по направляющей 4. В дан­ной конструкции магнитный поток, создаваемый обмоткой 1, не проходит через диски, а замыкается через магнитопровод 2 и якорь 3, что позволяет уменьшить зазор элект­ромагнита. Момент, развиваемый такой муфтой,

где Мд — момент трения одной пары дисков; п — общее число дисков.

Рис. 17.4. Многодисковая фрикционная муфта

Зная поверхность трения S и допустимое давление на поверхности одного диска руд, можно найти основные пара­метры электромагнита. Поскольку рабочий зазор мал и маг­нитное поле в рабочем зазоре равномерно, определить элек­тромагнитное усилие можно по формуле Максвелла.

Электромагниты муфты изготавливаются из сплошного материала и поэтому имеют большую постоянную времени. При отключении муфты на контактах коммутирующего ап­парата возникает дуга, которая замедляет процесс отклю­чения и вызывает сильную эрозию контактов. При быстром обрыве дуги возможны возникновение перенапряжения и пробой обмотки. Для облегчения процесса отключения обмотка шунтируется разрядным резистором. Для устранения залипания якоря в притянутом состоянии магнитная система должна иметь конечный зазор.

ЭЛЕКТРОМАГНИТНЫЕ ФЕРРОПОРОШКОВЫЕ МУФТЫ

В ферропорошковой муфте барабанного типа (рис. 17.5) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается электромагнит 4, связанный с ведомым ва­лом 6. Обмотка 5 электромагнита питается через контакт­ные кольца (на рисунке не показаны). Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбо­нильное железо) с зернами размером от 4—6 до 20—50 мкм, смешанными с сухим (тальк, графит) или жидким (транс­форматорное, кремнийорганические масла) наполнителем. При обесточенной обмотке и вращении ведущей части (ба­рабана) электромагнит и ведомый вал остаются неподвиж­ными, поскольку ферромагнитные зерна наполнителя сво­бодно перемещаются относительно друг друга. Определенное трение между барабаном и электромагнитом существует, но оно относительно невелико.

При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды, нахо­дящейся в барабане, резко возрастает. Увеличивается сила трения между барабаном и электромагнитом. На ведомом валу появляется вращающий момент.

При определенном значении тока возбуждения ферро­магнитный порошок и наполнитель полностью затвердевают. Барабан и электромагнит становятся жестко связанными. Можно рассматривать передаваемый момент как момент от силы трения, действующей между порошком и внутренней цилиндрической поверхностью барабана.

Рис. 17.5. Электромагнитная ферропорошковая муфта барабанного типа

Благодаря тому что зазор между барабаном и электро­магнитом заполнен ферромагнитной смесью, его магнит­ная проводимость очень велика, что позволяет уменьшить необходимую МДС обмотки и увеличить коэффициент уп­равления муфты, равный отношению передаваемой мощ­ности к мощности управления (мощности электромагнита).

На зерна ферромагнитного порошка кроме электромаг­нитных сил Рэм действуют центробежные силы Рц, пропор­циональные квадрату угловой скорости. Для оценки влия­ния центробежных сил вводится отношение £ц = РцЭм. Это отношение увеличивается с ростом диаметра муфты, уг­ловой скорости и уменьшается с ростом индукции в зазо­ре. Даже при В=1,8Тл отношение PJP3K достигает 40%, если частота вращения равна 3000 об/мин [14.1]. При оп­ределенном значении частоты вращения отношение РпЭм приближается к 100 % и муфта теряет управление. Поэто­му ферропорошковые муфты не применяют при скоростях более 3000 об/мин.

Читайте также:  Что такое сцепление

По сравнению с электромагнитными муфтами трения ферропорошковые муфты имеют значительно большее бы­стродействие (примерно в 10 раз) благодаря отсутствию якоря. Изменение момента во времени для линейной части характеристики М<1) определяется законом роста тока.

Поэтому в схемах автоматики порошковая муфта является инерционным звеном первого порядка. Большим преиму­ществом ферропорошковой муфты является отсутствие быстроизнашивающихся дисков трения.

Ферропорошковые муфты целесообразно применять там, где требуются высокое быстродействе, большая частота включения и плавное регулирование скорости ведомого ва­ла. Недостатком ферропорошковых муфт является меньшая передаваемая мощность при одинаковых габаритных раз­мерах с муфтой трения.

Возможны два варианта исполнения гистерезисных муфт: в первом — магнитное поле индуктора создается об­моткой, во втором — постоянными магнитами. Недостатком первого варианта является наличие контактной системы для передачи тока в индуктор, достоинством — возможность электрического управления муфтой. Муфты с постоянными магнитами (магнитогистерезисные) обладают высокой на­дежностью. Однако регулирование передаваемого момента в них затруднено.

В магнитогистерезисной муфте (рис. 17.6) постоянные магниты 1 с полюсными наконечниками 2 укреплены в магнитопроводе 3 индуктора, связанного с ведущим валом. На ось ведомого вала насажен ротор, состоящий из втулки 5 из немагнитного или магнитомягкого материала и колец 4 активного слоя. Кольца активного слоя изготовлены из материала с довольно широкой петлей гистерезиса, имею щей высокие значения остаточной индукции и коэрцитив­ной силы. Шихтованная структура активного слоя позволя­ет уменьшить вихревые токи и асинхронный вращающий момент.

Пусть ротор заторможен, а индуктор вращается привод­ным двигателем с угловой скоростью . Под действием вращающегося магнитного поля индуктора в активном слое появляются потери на гистерезис от перемагничивания. По­тери за один цикл перемагничивания определяются макси­мальным значением индукции в активном слое ротора.

Преимущество гистерезисной муфты заключается в по­стоянстве передаваемого момента. Если нагрузочный мо­мент Мн резко возрастает (неполадки, поломки механиз­ма), то максимальный момент, передаваемый на приводной двигатель, ограничен Мг и гистерезисная муфта защищает двигатель от перегрузки. Постоянство момента муфты обе­спечивает быстрый разгон нагрузки.

В ряде схем автоматики необходима быстрая остановка привода. В этих случаях применяются тормоза на базе гис­терезисной муфты. Ведомая часть муфты делается непо­движной, а ведущая соединяется с приводным двигателем. При торможении двигатель отключается и включается муфта. Постоянный тормозной момент муфты обеспечивает быструю остановку привода.

Гистерезисные муфты широко применяются для переда­чи момента в агрессивную среду, отделенную от окружаю­щей среды металлической немагнитной оболочкой и нахо­дящуюся под высоким давлением. В этом случае применя­ются муфты с аксиальным рабочим зазором. Ведущая часть с индуктором отделена немагнитной стенкой от ведомой ча­сти с активным слоем в виде колец.

Рис. 17.6. Магнитогистерезисная муфта с радиальным рабочим зазором

Электромагнитная муфта – Electromagnetic clutch

Электромагнитные муфты действуют электрически , но передают крутящий момент механически. Именно поэтому они используются для упоминаться как электромеханические муфты. На протяжении многих лет, EM стал известен как электромагнитная по сравнению с электро-механическим, имея в виду больше об их способе приведения в действие по сравнению с физической работы. Поскольку клатчи стали популярно более 60 лет назад, разнообразие приложений и сцепления конструкций резко возросло, но основная работа остается тем же сегодня.

Плоские муфты составляют примерно 90% от всех продаж электромагнитной муфты.

Электромагнитные муфты являются наиболее подходящими для дистанционного управления , так как никаких механических связей не требуются , чтобы контролировать их взаимодействие, что обеспечивает быструю и бесперебойную работу. Однако, поскольку энергия активации рассеивается в виде тепла в электромагнитном приводе , когда муфта находится в зацеплении, существует риск перегрева. Следовательно, максимальная рабочая температура муфты ограничена допустимой температурой изоляции электромагнита. Это главное ограничение. Другим недостатком является высокая начальная стоимость.

содержание

Фрикционная муфта

Фрикционная муфта использует одну поверхность пластины трения, чтобы привлечь входные и выходные элементы сцепления.

Как это устроено

обязательство

Когда муфта приводится в действие, ток течет через электромагнит производит магнитное поле. Ротора часть муфты намагничивается и устанавливает магнитный контур, который привлекает арматуру. Якорь вытягивается против ротора и сила трения образуется при контакте. В течение относительно короткого периода времени, нагрузка ускоряется, чтобы соответствовать скорости ротора, тем самым зацепления арматуры и выходной ступицу муфты. В большинстве случаев, ротор постоянно вращается с входом всего времени.

расцепление

Когда ток удаляется из муфты, якорь свободно вращается вместе с валом. В большинстве конструкций пружины держать якорь от поверхности ротора, когда сила высвобождается, создавая небольшой воздушный зазор.

Кататься на велосипеде

Велоспорт достигается путем прерывания тока через электромагнит. Проскальзывание обычно происходит только во время ускорения. Когда муфта полностью занят, не существует относительное скольжение, предполагая, что сцепление не имеет размеры должным образом, и, таким образом, крутящий момент передачи составляет 100% эффективность.

Приложения

машины

Этот тип сцепления используется в некоторых газонокосилках, копировальные машины и конвейерные приводы. Другие области применения включают упаковочные машины, печатные машины, оборудование для пищевой промышленности и автоматизации производства.

Транспортные средства

Когда электромагнитная муфта используется в автомобилях , может быть сцепление переключатель выпуска внутри рычага переключения передач. Драйвер работает переключатель, удерживая рычаг переключения передач , чтобы изменить механизм, таким образом , отрезав тока к электромагниту и расцепление муфты. С помощью этого механизма, нет необходимости нажимать на педаль сцепления. В качестве альтернативы, переключатель может быть заменен на датчик касания или датчик приближения , который обнаруживает присутствие руки возле рычага и отсекаются тока. Преимущества использования этого типа сцепления для автомобилей является то, что сложные связи не требуется для приведения в действие сцепления, и водитель должен приложить значительно уменьшенное усилие , чтобы управлять сцеплением. Это тип полуавтоматической коробки передач .

Электромагнитные муфты также часто встречаются в полноприводных системах, и используются для изменения количества энергии , отправленное на отдельные колеса или оси.

В большинстве автомобильных систем переменного тока с открытым приводом компрессорами различного смещения, меньшая электромагнитная муфта соединяет конец вала компрессора кондиционера на шкив приводится в коленчатом вал двигателя, часто через другой шкив и ремень , позволяя компрессор к циклу только тогда , когда необходимо. Некоторые компрессоры признакам в автомобильных систем переменного тока , однако, не имеют такого сцепления , и поэтому они постоянно приводится в действие двигателем, будучи их объемный расход контролируется (через электромагнитный клапан установлен на корпусе компрессора) , а не их рабочее состояние.

Электромагнитные муфты используются на тепловозах , например , путем гогенцоллернских Locomotive Works .

Другие типы электромагнитных муфт

Несколько клатчи дисков

Введение – Несколько клатчи дисков используются для доставки чрезвычайно высокий крутящий момент в относительно небольшом пространстве. Эти муфты могут быть использованы сухой или влажный (масляная баня). Запуск сцеплений в масляной ванне также значительно увеличивает рассеивание способность тепла, что делает их идеально подходят для нескольких коробок передач скорости и применения станков.

Как это работает – Несколько клатчи дисков работают с помощью электрического приведения в действие , но передавать крутящий момент механически. Когда ток подается через катушку сцепления, катушка становится электромагнитом и производит магнитные линии потока. Эти линии потока передаются через небольшой воздушный зазор между полем и ротором. Ротора часть сцепления становится намагниченной и устанавливает магнитный контур, который привлекает как арматуру и фрикционные диски. Притяжение компрессов якоря (выдавливает) диски трения, передача крутящего момента от во внутреннем драйвере к выполненным дискам. Выходные диски соединены с зубчатым соединением, или через шкив привода чашки. Сцепления скользит до тех пор , входные и выходные РПМ не совпадают. Это происходит , как правило , относительно быстро (0,2 – 2 сек).

Когда ток удаляется из муфты, якорь свободно вращается вместе с валом. Пружины удерживают фрикционные диски друг от друга, так что нет никакого контакта, когда муфта не занимаются, создавая минимальное количество сопротивления.

Электромагнитные муфты зубчатые

Введение – Из всех электромагнитных муфт, сцепления зубов обеспечивают максимальную величину крутящего момента , в наималейшем общем размере. Поскольку крутящий момент передается без какого – либо проскальзывания, муфта идеально подходит для многостадийного машин , где выбор время является критическим , такими как многоступенчатыми печатными машины . Иногда, точные сроки должны быть сохранены, так клатч зуба можно сделать с помощью одного варианта позиции , что означает , что они будут заниматься только на определенную отметке степени. Они могут быть использованы в сухих или влажных (масляная баня) приложений, так что они очень хорошо подходят для приводов типа коробки передач.

Они не должны использоваться в высокоскоростных приложениях или приложениях, которые имеют скорость зацепления более 50 мин противном случае возможно повреждение зубов возникли бы при попытке включить сцепление.

Как это работает – Электромагнитные муфты зуба действуют посредством электрического приведения в действие , но передавать крутящий момент механически. Когда ток течет через катушку сцепления, катушка становится электромагнитом и производит магнитные линии потока. Этот поток затем передается через небольшой зазор между полем и ротором. Ротора часть сцепления становится намагниченной и устанавливает магнитный контур, который привлекает зубы якоря к зубам ротора. В большинстве случаев, ротор последовательно вращается с входом (драйвер). Как только муфта якоря и ротор заняты, запереть на 100%.

Когда ток удаляется из поля сцепления, якорь свободно вращается вместе с валом. Пружины удерживать арматуру от поверхности ротора, когда сила высвобождается, создавая небольшой воздушный зазор, и обеспечивает полное отсоединение от входа к выходу.

Электромагнитные муфты частиц

Введение – Магнитные муфты частиц являются уникальными по своей конструкции, от других электро-механических муфт из-за широким рабочим диапазона крутящего момента. Как стандарт, одной лицевой муфты, крутящий момент на напряжение почти линейно. Однако в магнитной частицы сцепления крутящий момент может быть очень точно регулировать. Это делает эти устройства идеально подходят для приложений контроля натяжения, таких как провода обмоток, фольги, пленки, и контроля ленты натяжения. Из – за их быстрое реагирование, они также могут быть использованы в приложении высокого цикла, такие как считыватели карт, сортировочные машины и оборудование для мечения.

Как это работает – магнитные частицы (очень похожие на железные опилки) расположены в порошковой полости. Когда ток течет через катушку, магнитный поток , который создается пытается связать частицы вместе, почти как магнитная каше частиц. По мере увеличения тока, магнитное поле создает, усиление связывания частиц. Ротора сцепления проходит через связанные между собой частицы, в результате чего сопротивления между входом и выходом во время вращения. В зависимости от требований выходного крутящего момента, выход и вход может заблокировать при 100% передачи.

Когда ток удаляется из муфты, вход практически свободно вращаться вместе с валом. Поскольку магнитные частицы остаются в полости, все магнитные муфты частиц имеют некоторое минимальное сопротивление.

Гистерезис питанием сцепления

Электрические блоки гистерезиса имеют очень высокий диапазон крутящего момента. Так как эти устройства могут управляться дистанционно, они идеально подходят для тестирования приложений, где требуются изменения крутящего момента. Так как момент сопротивления минимален, эти единицы предлагают самый широкий доступный диапазон крутящего момента любого электромагнитного продукта. Большинство приложений с участием силовых коммутационных гистерезиса в требованиях испытательного стенда. Поскольку все крутящий момент передается магнитным способом, нет никакого контакта, поэтому износ не происходит с какой-либо из компонентов передачи крутящего момента, обеспечивающих чрезвычайно длительный срок службы.

Когда ток подводится, он создает магнитный поток. Это переходит в роторной части поля. Гистерезис диск физически проходит через ротор, не прикасаясь к нему. Эти диски имеют возможность стать намагничены в зависимости от силы потока (это рассеивается, как поток удаляется). Это означает, что при вращении ротора, магнитное сопротивление между ротором и гистерезисом диском происходит вызывая вращение. В некотором смысле, гистерезис диск разобран после ротора. В зависимости от выходного крутящего момента, необходимого, это тянуть в конечном итоге может соответствовать скорости ввода, давая 100% блокировку с.

Когда ток удаляются из муфты, арматура может свободно поворачиваться и не относительная силы не передаются между любым членом. Таким образом, единственный момент виден между входом и выходом подшипником сопротивления.

Смотрите также

Рекомендации

В. Pelczewski: SPRZEGLA ELEKTROMAGNETYCZNE (Польский оригинальное издание); Немецкое издание: Elektromagnetische Kupplung, Kapitel: Elektromagnetische Induktionskuppling; Фивег 1971, ISBN 3 528 04906 5

Ссылка на основную публикацию