Характеристики современного двигателя

ohfuck › Блог › Основные параметры двигателей.

Основные параметры двигателей

На большинстве автомобилей установлен двигатель внутреннего сгорания (ДВС). Устройство его достаточно сложно даже для специалиста, тем более для рядового водителя-непрофессионала. Однако при покупке машины всегда всегда идёт речь о характеристиках двигателя. Неспециалист обычно теряется перед выбором автомобиля вообще или конкретной его версии в частности. Попробуем разобраться в основных технических характеристиках двигателя внутреннего сгорания.

В современных автомобилях от 2 до 16. Этот достаточно серьезный показатель. Так, два двигателя с одинаковым объемом и мощностью могут сильно различаться по другим параметрам.

Два типа: рядное (последовательное) и V-образное (двухрядное), когда на одном коленчатом валу цилиндры расположены с обеих сторон. В этом случае важную роль играет угол развала цилиндров. Большой угол развала понижает центр тяжести, облегчает охлаждение и подачу масла, но при этом снижаются динамические характеристики и увеличивается инерционность. Малый угол позволяет снизить вес и инерционность, но ведёт к более быстрому перегреву.

Радикальная разновидность — оппозитный двигатель с углом развала в 180°. В этом случае все его преимущества и недостатки максимальны. Еще одна разновидность — W-образный (четырёхрядный; два синхронизированных и включенных в общую систему привода V-образных двигателя).

Весьма редкий тип двигателя — рядно-V-образный, являющийся синтезом этих двух разновидностей. Цилиндры расположены последовательно, но с отклонением по обе стороны, что способствует лучшему охлаждению.

Вообще говоря, между два основных типа двигателей различаются массой и габаритами. НОднако важно, что наименьший уровень шума и вибраций достигается, когда в одном ряду четное количество цилиндров.

✔ Объем камер сгорания

Иначе говоря, объем двигателя. Он напрямую влияет абсолютно на все остальные характеристики ДВС. В большинстве случаев увеличение объема ведет к увеличению мощности и, естественно, расхода топлива.

Обычно три варианта — чугун или другие ферросплавы (наибольшая прочность, но большой вес);. алюминий и его сплавы (малый вес и средняя прочность); магниевые сплавы (наименьший вес, высокая прочность, но очень высокая цена).

Эти характеристики, вообще говоря, говорят лишь о ресурсе и шумах и вибрации двигателя.

✔ На практике более важны выходные характеристики:

• Мощность. Она измеряется в лошадиных силах (л.с. — традиционная единица измерения) или киловаттах (кВт). Именно она определяет скорость и время разгона автомобиля.

• Крутящий момент Создаваемое двигателем максимальное тяговое усилие. Измеряется в Ньютон-метрах (Н·м). Косвенно влияет на скорость и разгон и прямо — на «эластичность» двигателя т. е. способность ускоряться на низких оборотах.

• Максимально допустимое число оборотов коленчатого вала в минуту (об/мин) Показывает, сколько оборотов коленвала в минуту сможет выдержать двигатель без потери в ресурсной прочности. Чем больше число оборотов, тем более резкий и динамичный характер имеет автомобиль.

✔ Однако не менее важны расходные характеристики:

• Расход топлива. Обычно измеряется в литрах на 100 километров. Расход в городском, загородном и смешанном вариантах различен.

• Тип топлива. Марка потребляемого бензина или дизельного топлива (ДТ). В современных автомобилях возможно использование любых марок, но при снижении октанового числа падают ресурсная прочность и мощность, а при повышении сверх нормы — повышается мощность, но снижается ресурс. Также при повышении октанового числа увеличивается теплоотдача, что может привести к раннему перегреву. Пример марок топлива: А-76, А-92, АИ-98, А-95Евро, ДТ, ДТ Евро, ДТ Супер.

• Расход масла. Измеряется в литрах, но на 1000 км. Максимальный показатель — 1л/1000км для исправной машины.

• Марка потребляемого масла. Обычно обозначется ххWхх. Первое число — густота масла, второе — его вязкость. Например — 0W40 и 5W40 — синтетические масла, 10W40 — полусинтетическое масло, 15W40 и 20W40 — минеральные масла. Более густые и вязкие масла улучшают прочность и надежность двигателя, менее густые — улучшают динамические выходные характеристики.

Внимание! Масла типа 70W90 или 95W100 являются трансмиссионными и ни в коем случае не могут быть использованы в двигателе — это гарантированно приведет к неисправности двигателя!

• Ресурсная прочность, т. е. как часто двигателю необходимо техническое обслуживание. Обычно в пределах 5 000—30 000 км пробега. Предельный пробег позволяет примерно определить полный срок службы, после гарантийного пробега прекращаются гарантийные обязательства.

Это основные потребительские характеристики.

✔ Однако надо отметить широкий ряд более сложных характеристик:

• Тип топливной системы — бензиновые и дизельные двигатели. Бензиновые обычно имеют большую мощность, но дизельные отличаются более низким расходом и большим крутящим моментом.

• Тип бензиновой системы впуска. У современных автомобилей электронная система впрыска (инжекции) топлива, которая позволяет добиться большего КПД. У более старых в большинстве карбюраторная система впуска топлива. Карбюратор не распыляет, как инжектор, топливо в камере сгорания, а вбрасывает в нее струю, что увеличивает расход топлива, снижает КПД и делает управление, менее удобным.
Обычно карбюратор устанавливается на двигатель один, многокарбюраторные двигатели более характерны для тюнинговых и спортивных моделей.

• Тип бензиновой системы впрыска — с одноточечным и многоточечным впрыском. Одноточечная система уже практически не используется, поскольку падение мощности намного превышает снижение расхода топлива.Многоточечный — распределенный и прямой впрыск. При распределенном впрыске в камере сгорания создается равномерная смесь, что обеспечивает стабильность работы на любых режимах и неприхотливость.
Прямой (непосредственный) впрыск, как это ни парадоксально, повышает и мощность, и ресурсную прочность, снижает расход топлива. Но в этом случае высока стоимость, требуется топливо высокого качества и наблюдается нестабильность работы на малых оборотах и при холодном старте.
Недостатки обеих систем компенсируются комбинированным (двойным) впрыском. Он заключается в применении обеих систем раздельно — при изменении режимов работы электроника «выбирает» нужную.

• Дизельная система впрыска.Хотя дизельный двигатель проще бензинового, система его впрыска сложнее, построены по другому принципу:
ТНВД — наиболее простая система дизельного впрыска с невысокими достоинствами. Система с насос-форсунками. В этом случае каждая форсунка впрыска является еще и насосом, подающим топливо в камеру сгорания. Характеристики в этом случае получше, но стабильная работы двигателя также проблематична. Обе системы по отдельности почти не используются.
Комбинация ТНВД и насос-форсунок — общая топливная рампа высокого давления Common Rail. ТНВД подает топливо в рампу, где оно подвергается компрессии и под высоким давлением впрыскивается в камеру сгорания. Это лучшая сейчас система, так как она обеспечивает высокие мощностные характеристики и низкий расход топлива.
Совершенствование предыдущей — аккумуляторно-возвратная рампа Common Rail второго поколения. Сжатие в рампе происходит за счет накопления топлива, а излишки поступают обратно в ТНВД — это уменьшает насосные потери мощности и расход топлива.

• Форсунки впрыска — механические или пьезотронные. Они не влияют на характеристики двигателя, но пьезотронные дают более плавный рабочий цикл и они легче в настройке.

• Клапанов на впуске/выпуске от 2 до 5 на цилиндр. Чем больше клапанов, тем плавнее работа и больше мощность, хотя при этом незначительно увеличивается расход топлива.

✔ Компрессор. Его роль — сжатие впускной смеси.

• Атмосферные двигатели — компрессора не имеют.
Двигатели с компрессией — компрессорные (с механическим компрессором) и турбонаддувные, различающиеся типом привода.

• Механический компрессор приводится непосредственно от коленвала двигателя, что создает некоторые потери в мощности и увеличивает расход топлива, турбонаддув имеет крыльчатку турбины, которая раскручивается от давления выхлопных газов. Это надежнее и не дает потерь, но прирост крутящего момента меньше, особенно на малых оборотах.

Иногда на двигатель ставят несколько компрессоров -последовательно (улучшается стабильность работы) либо параллельно (повышаются характеристики в пиковых режимах).

Система газораспределения — механизм газораспределения, распределительные валы и привод. Количество распред. валов может изменяться, но чаще по одному на каждые 8 клапанов.

Привод механизма газораспределения — цепь или ремень. Ремень проще, но требует регулярной замены. Цепь надежнее, но издаёт больше шума (металлический лязг) и дороже.

Простейший — статический механизм. Динамические — с изменяемой высотой подъема клапанов или изменяемыми фазами газораспределения.
Изменение высоты подъёма клапанов позволяет переключаться между двумя режимами движения — например экономичным и скоростным. Изменение фаз газораспределения обеспечивает более ровную работу во всем диапазоне рабочих оборотов коленвала.

Есть немало и других особенностей двигателей, но они меньше влияют на их характеристики.

Устройство двигателя внутреннего сгорания

Изобретение двигателя внутреннего сгорания позволило человечеству в развитии шагнуть значительно вперед. Сейчас двигатели, которые используют для выполнения полезной работы энергию, выделяемую при сгорании топлива, используются во многих сферах деятельности человека. Но самое большее распространение эти двигатели получили в транспорте.

Все силовые установки состоят из механизмов, узлов и систем, которые взаимодействуя между собой, обеспечивают преобразование энергии, выделяемой при сгорании легковоспламеняемых продуктов во вращательное движение коленчатого вала. Именно это движение и является его полезной работой.

Чтобы было понятнее, следует разобраться с принципом работы силовой установки внутреннего сгорания.

Принцип работы

При сгорании горючей смеси, состоящей из легковоспламеняемых продуктов и воздуха, выделяется больше количество энергии. Причем в момент воспламенения смеси она значительно увеличивается в объеме, возрастает давление в эпицентре воспламенения, по сути, происходит маленький взрыв с высвобождением энергии. Этот процесс и взят за основу.

Если сгорание будет производиться в закрытом пространстве – возникающее при сгорании давление будет давить на стенки этого пространства. Если одну из стенок сделать подвижной, то давление, пытаясь увеличить объем замкнутого пространства, будет перемещать эту стенку. Если к этой стенке присоединить какой-нибудь шток, то она уже будет выполнять механическую работу – отодвигаясь, будет толкать этот шток. Соединив шток с кривошипом, при перемещении он заставит провернуться кривошип относительно своей оси.

В этом и заключается принцип работы силового агрегата с внутренним сгоранием – имеется закрытое пространство (гильза цилиндра) с одной подвижной стенкой (поршнем). Стенка штоком (шатуном) связана с кривошипом (коленчатым валом). Затем производится обратное действие – кривошип, делая полный оборот вокруг оси, толкает штоком стенку и так возвращается обратно.

Но это только принцип работы с пояснением на простых составляющих. На деле же процесс выглядит несколько сложнее, ведь надо же вначале обеспечить поступление смеси в цилиндр, сжать ее для лучшего воспламенения, а также вывести продукты горения. Эти действия получили название тактов.

Всего тактов 4:

  • впуск (смесь поступает в цилиндр);
  • сжатие (смесь сжимается за счет уменьшения объема внутри гильзы поршнем);
  • рабочий ход (после воспламенения смесь из-за своего расширения толкает поршень вниз);
  • выпуск (отведение продуктов горения из гильзы для подачи следующей порции смеси);

Такты поршневого двигателя

Из этого следует, что полезное действие имеет только рабочий ход, три других – подготовительные. Каждый такт сопровождается определенным перемещением поршня. При впуске и рабочем ходе он движется вниз, а при сжатии и выпуске – вверх. А поскольку поршень связан с коленчатым валом, то каждый такт соответствует определенному углу проворота вала вокруг оси.

Реализация тактов в двигателе делается двумя способами. Первый – с совмещением тактов. В таком моторе все такты выполняются за один полный проворот коленвала. То есть, пол-оборота колен. вала, при котором выполняется движение поршня вверх или вниз сопровождается двумя тактами. Эти двигатели получили название 2-тактных.

Второй способ – раздельные такты. Одно движение поршня сопровождается только одним тактом. В итоге, чтобы произошел полный цикл работы – требуется 2 оборота колен. вала вокруг оси. Такие двигатели получили обозначение 4-тактных.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм, входящий в конструкцию мотора, обеспечивает преобразование возвратно-поступательного перемещения поршня в гильзе во вращательное движение коленвала. Основным элементом этого механизма является коленвал. Он имеет подвижное соединение с блоком цилиндров. Такое соединение обеспечивает вращение этого вала вокруг оси.

К одному из концов вала прикреплен маховик. В задачу маховика входит передача крутящего момента от вала дальше. Поскольку у 4-тактного двигателя на два оборота коленвала приходится только один полуоборот с полезным действием – рабочий ход, остальные же требуют обратного действия, которое и выполняется маховиком. Имея значительную массу и вращаясь, за счет своей кинетической энергии он обеспечивает провороты колен. вала во время подготовительных тактов.

Окружность маховика имеет зубчатый венец, при помощи его выполняется запуск силовой установки.

С другой стороны вала размещается приводная шестерня масляного насоса и газораспределительного механизма, а также фланец для крепления шкива.

Этот механизм также включает шатуны, которые обеспечивают передачу усилия от поршня к коленвалу и обратно. Крепление к валу шатунов тоже производится подвижно.

Поверхности блока цилиндров, колен. вала и шатунов в местах соединения напрямую между собой не контактируют, между ними находятся подшипники скольжения – вкладыши.

Читайте также:  Что надо знать об автоматической коробке передач

Цилиндро-поршневая группа

Состоит данная группа из гильз цилиндров, поршней, поршневых колец и пальцев. Именно в этой группе и происходит процесс сгорания и передача выделяемой энергии для преобразования. Сгорание происходит внутри гильзы, которая с одной стороны закрыта головкой блока, а с другой – поршнем. Сам поршень может перемещаться внутри гильзы.

Чтобы обеспечить максимальную герметичность внутри гильзы, используются поршневые кольца, которые предотвращают просачивание смеси и продуктов горения между стенками гильзы и поршнем.

Поршень посредством пальца подвижно соединен с шатуном.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Система смазки

Система смазки обеспечивает снижение трения между взаимодействующими поверхностями двигателя, путем создания специальной пленки, предотвращающей прямой контакт поверхностей. Дополнительно осуществляет отвод тепла, защищает от коррозии элементы двигателя.

Состоит система смазки из масляного насоса, емкости для масла – поддона, маслозаборника, масляного фильтра, каналов, по которым масло движется к трущимся поверхностям.

Система охлаждения

Поддержание оптимальной рабочей температуры во время работы двигателя обеспечивается системой охлаждения. Используется два вида системы – воздушная и жидкостная.

Воздушная система производит охлаждение путем обдува цилиндров потом воздуха. Для лучшего охлаждения на цилиндрах сделаны ребра охлаждения.

В жидкостной системе охлаждение производится жидкостью, которая циркулирует в рубашке охлаждения с прямым контактом с внешней стенкой гильз. Состоит такая система из рубашки охлаждения, водяного насоса, термостата, патрубков и радиатора.

Система зажигания

Система зажигания применяется только на бензиновых двигателях. На дизелях воспламенение смеси производится от сжатия, поэтому такая система ему не нужна.

У бензиновых же авто, воспламенение выполняется от искры, проскакивающей в определенный момент между электродами свечи накаливания, установленной в головке блока так, что ее юбка находится в камере сгорания цилиндра.

Состоит система зажигания из катушки зажигания, распределителя (трамблера), проводки и свечей зажигания.

Электрооборудование

Обеспечивает это оборудование электроэнергией бортовую сеть авто, в том числе и систему зажигания. Этим оборудование также производится и запуск двигателя. Состоит оно из АКБ, генератора, стартера, проводки, всевозможных датчиков, которые следят за работой и состоянием двигателя.

Это и все устройство двигателя внутреннего сгорания. Он хоть и постоянно совершенствуется, однако принцип работы его не меняется, улучшаются лишь отдельные узлы и механизмы.

Современные разработки

Основной задачей, над которой бьются автопроизводители – это снижение потребление топлива и выбросов вредных веществ в атмосферу. Поэтому они постоянно улучшают систему питания, результатом является недавнее появление инжекторных систем с непосредственным впрыском.

Ищутся альтернативные виды топлива, последней разработкой в этом направлении пока является использование в качестве топлива спиртов, а также растительных масел.

Также ученые пытаются наладить производство двигателей с совершенно иным принципом работы. Таковым, к примеру, является двигатель Ванкеля, но особых успехов пока нет.

Современный мотор: меньше, мощнее – но не вечно…

Если говорить о тенденциях современного мирового моторостроения, то двигатель внутреннего сгорания остается на лидирующих позициях, хотя справедливости ради надо отметить, что некие попытки «покуситься» на «святая святых» все же существуют – например, уже продается серийный электромобиль Tesla. Но поскольку нефтепромышленность сегодня является ключевой отраслью мировой экономики, доминирование двигателей внутреннего сгорания еще на многие десятилетия может остаться незыблемым.

Немного истории. Грустной.

Современные двигатели конструктивно практически мало изменились со времен «отцов-осно-вателей»: Николауса Августа Отто и Рудольфа Кристиана Карла Дизеля. Сегодня в ходу те же коленчатый вал, шатуны, поршни, цилиндры, клапаны, распределительный механизм.

Поэтому все новшества в двигателестроении опираются на новые материалы и технологии, в том числе связанные с электронным управлением.

Например, если еще 20 лет назад блок цилиндров почти повсеместно был сделан из чугуна, то сегодня чугунный блок встречается редко, плавно перейдя в разряд анахронизмов. В настоящее время блоки делают из алюминия, который и легче, и технологичнее. Сначала были проблемы с прочностью и жесткостью, но их постепенно решили.

Правда, полностью алюминиевые моторы действительно приживаются трудно – очень они чувствительны к смазке, охлаждению, зазорам. А вот алюминиевый блок с чугунными гильзами гораздо менее требователен в эксплуатации. Так что старый добрый чугун, который использовали Отто и Дизель, еще послужит.

Вообще надо отметить, что создание нового двигателя даже традиционной схемы – это процесс очень долгий. Вот и получается, что модельный ряд автомобилей меняется в среднем через четыре-пять лет, а мотор в нем нередко стоит от предыдущих моделей, а то и еще более ранних. И часто даже в новых двигателях используются узлы от старых – например, блок цилиндров. Так что двигатели «живут» долго – бензиновые в среднем 10-15 лет, а дизели легко «доживают» до 20 и даже 30 лет.

И еще. С сожалением приходится признать, что в России практически не было своих разработок двигателей – все бралось «оттуда», из-за границы. Причем часто даже то, что там отвергалось. Результат очевиден – сегодня передового двигателестроения у нас в стране просто не существует. Как и конструкторов для его возрождения.

Все началось с авиации. Авиадвигатель Rolls-Royce Merlin 40-х годов прошлого века с непосредственным впрыском

Успехи, неудачи и тенденции

В современном моторостроении существуют две основные тенденции: первая – сократить вредные выбросы, и вторая – снизить расход топлива. Это взаимосвязанные задачи: сокращая расход, мы автоматически снижаем выбросы.

Но если 10-15 лет назад «вредными выбросами» считались традиционные оксид углерода – СО, оксиды азота – NOx и углеводороды – СН, то сегодня в разряд основных перешел и углекислый газ СО2, создающий «парниковый эффект». И если учесть, что любое углеводородное топливо в конечном счете распадается на воду и углекислый газ – то уменьшить выбросы СО2 можно единственным путем: снижением расхода топлива.

Здесь надо принять во внимание и такой нюанс: КПД у двигателя внутреннего сгорания в целом лишь около 25-30%. Выходит, что только четверть бензина в ДВС тратится на движение – остальные три четверти просто вылетают в трубу. И греют окружающую среду. Поэтому инженеры-моторостроители борются за каждый «лишний» процент с помощью довольно сложных технических решений.

Верный способ – повысить удельные параметры двигателя: проще говоря, получить «одну лошадиную силу» с меньшего количества топлива. Например, одним из основных путей роста эффективности бензинового двигателя является повышение степени сжатия. При росте степени сжатия эффективность сгорания топлива в цилиндре повышается, а значит, возрастает коэффициент полезного действия (КПД) цикла – и двигателя в целом.

В частности, повышение основных параметров двигателей, в том числе путем увеличения степени сжатия, дают системы непосредственного впрыска бензина в цилиндр – впрыск сдвигает режимы детонации, убирает неравномерность подачи топлива и увеличивает наполнение цилиндров.

Когда мы еще были впереди планеты всей: форкамерно-факельное зажигание на Волге — прообраз современного послойного распределения заряда

На самом деле эта идея достаточно старая: непосредственный впрыск широко применялся на авиационных двигателях 40-х годов прошлого века. Инженерам требовалось добиться небывалой по тем временам удельной мощности 70 л.с. с 1 л рабочего объема двигателя при максимальных 2500-3000 об/мин. Сегодня это удельная мощность обычного автомобильного двигателя (хотя и при вдвое больших оборотах, так что авиационный уровень 70-летней давности все еще не превзойден современным автомобилестроением) – а тогда достичь их в авиации было возможно только с помощью непосредственного впрыска.

Но система подачи топлива была механической, т.е. сложной, дорогой и требовавшей постоянных регулировок, что было приемлемо в авиации, но никак не на автомобилях.

Форкамерно-факельный процесс в двигателе Honda CVCC, такие двигатели ставились на автомобили Honda почти до конца 1980-х годов

Кроме того, механическое управление непосредственным впрыском было хорошо при низких оборотах, требовавшихся для тогдашних авиационных двигателей (воздушный винт все же!). А при их росте хотя бы до автомобильных 6000 об/мин механика уже не справлялась.

Собственно, «возвращение» к старой идее в 1990-2000-х годах стало возможным благодаря развитию электроники, позволившей реализовать управление непосредственным впрыском на высоких оборотах двигателя – с внедрением электронных компонентов появилась возможность управлять процессом горения, чего не было ранее.

Карбюратор, да и традиционные системы впрыска – так называемое внешнее смесеобразование, позволяли лишь смешать 15 кг воздуха с 1 кг топлива и подать смесь в цилиндры. И все. А вот электронное управление непосредственным впрыском в цилиндр дает возможность инженеру выбирать – когда вводить топливо, сколько вводить. И даже впрыскивать топливо за один цикл двигателя несколько раз.

Еще в 70-х годах ХХ века конструкторы для экономии топлива предложили использовать принцип «послойного» впрыска, реализованный в виде так называемого «форкамерно-факель-ного зажигания». Идея заключалась в том, что в специальной камере создается богатая смесь, которая при воспламенении от свечи создает факел, поджигающий бедную смесь, подаваемую непосредственно в цилиндр. Машины с такими двигателями (с аббревиатурой СТСС – Compound Vortex Controlled Combustion) разработала и длительное время производила японская Honda, и даже горьковский автозавод некоторое время выпускал «Волги» с форкамерными моторами. Но в итоге к середине 1980-х от этой идеи пришлось отказаться. Ведь приходилось готовить сразу две топливо-воздушных смеси: бедную, которой надо было много, и богатую, которой надо было мало. И подавать их раздельно – при этом в точные временные промежутки. А сложные карбюраторы (а тогда полноценного электронного управления еще не существовало) не прибавляли ни надежности, ни оптимизма по снижению себестоимости. Но основной удар был неожиданным – выяснилось, что помимо СО и СН оксиды азота тоже не слишком полезны. А здесь у «послойников» возникли новые проблемы.

Но всего через 10 лет, примерно к середине 1990-х годов, инженеры смогли вернуться к идее на новом уровне, чтобы с помощью электроники объединить в одном двигателе все три составляющие: непосредственный впрыск, управление процессом горения и послойное смесеобразование, что позволило поднять степень сжатия и выйти на новый уровень.

Первыми создали серийные автомобили с такими моторами в компании Mitsubishi – они имеют обозначение GDI (Gasoline Direct Injection – «система прямого впрыска бензина»). За ними последовали и другие производители. В этих двигателях нет отдельной форкамеры – форсунка впрыскивает бензин в цилиндр под очень высоким давлением. А камера сгорания имеет такую «хитрую» форму, что в зоне у свечи оказывается богатая смесь, а в остальном объеме – бедная.

Казалось бы, все прекрасно: степень сжатия высокая, смесь бедная, как следствие, вредные выбросы заметно снижены, а экономичность улучшена. Но опять начались проблемы с оксидами азота. Дело в том, что традиционные трехкомпонентные нейтрализаторы убирают из выхлопа СО, NOХ и СН только у смеси обычного состава (15 кг воздуха на 1 кг топлива). А вот с возросшими при бедных смесях объемами оксидов азота они уже не справляются. Так что пришлось разрабатывать новые дополнительные катализаторы. Работают они хорошо, хотя требуют специальной жидкости в качестве «топлива». Но хорошо только в том случае, если в бензине нет серы. А если есть – то быстро «умирают». Ведь бензин с полным отсутствием серы пока еще редкость даже в богатых странах.

Поэтому автопроизводители от идеи послойного впрыска вынуждены были отказаться, а проблему уже построенной инфраструктуры по производству этих двигателей (и уже немало потраченных денег) решили путем «перепрошивки» электронного управления впрыском.

Теперь впрыск топлива осуществляется не тогда, когда поршень находится вблизи верхней «мертвой точки», а раньше. И пока поршень проходит весь путь до ВМТ, смесь успевает перемешаться до практически гомогенной.

Так что «попытка № 2» внедрения послойного смесеобразования и управления горением тоже сорвалась. Когда будет третья попытка, неясно. Но то, что она будет – вполне предсказуемо. Ведь уже создано достаточно много таких двигателей, они работают, хотя их возможности пока не реализованы полностью.

Читайте также:  Что делать если навязали страховку?

Еще одно направление повышения эффективности ДВС – системы регулирования фаз газораспределения. Они получили распространение недавно, в начале 90-х годов ХХ века, но сегодня двигатель без регулирования фаз уже смотрится каким-то анахронизмом.

Логика таких систем понятна – для эффективной работы двигателя при малых оборотах время (продолжительность) и момент открытия впускных и выпускных клапанов должны быть одни, а с повышением оборотов – другие. И сегодня существует много систем, которые регулируют не только время открытия клапанов, но и величину этого открытия. Что делает ДВС эластичным, а автомобиль с ним – экологичным, экономичным и удобным.

Если подводить промежуточный итог, то можно сказать следующее: современный бензиновый ДВС – обязательно с регулируемыми фазами, а лучшие его образцы имеют непосредственный впрыск. Для повышения мощности двигателей нередко используется наддув, который увеличивает количество воздуха, поступающего в цилиндры, и удельную мощность. Существуют две схемы наддува: газотурбинный, когда турбину для привода компрессора раскручивают выхлопные газы, и приводной, когда компрессор приводится непосредственно от двигателя. Приводные компрессоры тоже разные: объемные, винтовые, волновые и т.д. Но большого распространения такие системы так и не получили, хотя известны давно – в отличие от регулирования фаз газораспределения, непосредственного впрыска топлива и турбонаддува.

Ванкель и другие

В принципе, возможны альтернативы старой конструкции, созданной во времена Отто и Дизеля. Но создать работающий двигатель, способный на равных конкурировать с привычной схемой по всем показателям, очень сложно. Двигатели Стирлинга, Баландина и многих других оригинальных схем и решений не получили распространения и оказались на грани забвения.

И хотя новые идеи витают в воздухе, реализовать даже лучшие из них весьма проблематично. Например, роторно-лопастной мотор Вигриянова, который изначально планировалось устанавливать в «прохоровский» «ё-мобиль», пока так и не создан. И для того чтобы (возможно!) довести его до серийного производства, потребуется, по прикидкам, как минимум, 10 лет и весьма неограниченное финансирование. Причем несколько из этих 10 лет надо будет потратить на подготовку специалистов, способных его довести. А поскольку с «неограниченным финансированием», кажется, наступили проблемы, этот двигатель, скорее всего, света так и не увидит.

Роторно-поршневой двигатель Ванкеля стал, пожалуй, единственным примером внедрения в серийное производство ДВС нетрадиционной конструкции. Хотя двигателю данной схемы уже добрых полвека, и за это время многие производители, выпускавшие такие моторы, давно «сошли с дистанции» (последним стал АвтоВАЗ), он и по сей день ставится на автомобили Mazda. Причем компания так долго занимается этим двигателем и добилась таких его показателей, что уже вряд ли кто сможет сделать хотя бы такой же – по цене, надежности и эффективности. И потому он вряд ли когда-нибудь станет массовым.

Ремонт ремонту рознь

Современные двигатели гораздо более надежны, чем те, которые производились, например, 20 лет назад. В них не надо ничего регулировать, что-то менять – они работают без поломок как минимум до окончания срока гарантии.

Но есть нюанс – сегодня срок службы всего автомобиля стал значительно меньше, чем был ранее. Прошли те времена, когда машину покупали «на всю жизнь». Сегодня сложилась тенденция: люди хотят ездить на новой модели машины. И потому автомобили меняются в среднем через 3-5 лет. Соответственно автопроизводителям не имеет смысла делать машину, которая без поломок прослужит 20 лет. Вот и получается, что автопарк обновляется значительно быстрее, чем два-три десятка лет назад.

Так что время двигателей-«миллионников» давно «кануло в Лету» – их просто невыгодно

делать. Да и зачем? Ресурс мотора рассчитывается с учетом возможного пробега автомобиля: в среднем можно говорить максимум о 150 тыс. км.

Процесс непосредственного впрыска уже широко распространился, но пока использовать все его преимущества не удается

Очевидно, ремонт двигателя должен продлить ресурс – но не до бесконечности, а до конца срока службы автомобиля (который тоже закладывается относительно небольшим – не более 10 лет). К чему это приводит? К тому, что некоторые ремонтные процессы становятся просто ненужными, а ремонтное оборудование «отстает» от современных двигателей.

Например, на старых моторах уровень нагрузки составлял 50 л/с с 1 л объема, а на современных (с наддувом) – вдвое больше. При такой разнице удельных мощностей и нагрузок на детали «старое-доброе» уже не работает – нужны новые технологии. Сегодня многие работы стало просто невозможно сделать без современного оборудования – шлифовального, расточного, хонинговального. Оно не слишком хорошо окупается, поэтому многие предпочитают работать по старинке. Но не тут-то было.

Так, для новых моторов нередко используются шатуны с «ломаными» крышками. Традиционные конструкции крышек шатунов, изготовленных отдельно, а потом собранных, для современных высоконагруженных двигателей не подходят – неточно и совсем недешево. И при ремонте традиционных шатунов всегда есть опасность нарушения соосности, что ведет к катастрофическим последствиям для мотора, хотя традиционные шатуны ремонтируются легко. А вот «колотые» – не ремонтируются вообще.

Еще пример – коленчатый вал на старом тихоходном двигателе можно было наварить и прошлифовать. Сейчас это невозможно даже представить: усталостные трещины очень быстро приведут к разрушению всего двигателя. Кроме того, ручная работа с большим количеством операций стоит дорого. А коленчатый вал легкового мотора – деталь массовая, а значит, и недорогая. И делать двойную, а то и тройную работу, чтобы восстановить деталь, которая потом быстро выйдет из строя, по крайней мере, экономически неэффективно.

При этом надо помнить, что просто замена одной детали, вышедшей из строя, не решает проблемы поломки двигателя в целом: такая локальная замена обычно предполагает «гарантию только до ворот». Современный высоконагруженный двигатель – это сложный комплекс, а потому его ремонт должен быть комплексным, с заменой всего «по кругу», чтобы даже самый экономный автовладелец не возвращался через каждые 10-15 тыс. км для замены очередной детали. Вот почему качественно отремонтированный мотор стоит всего лишь на 25-30% меньше нового. Но насколько такой ремонт выгоднее замены для владельца?

Так что современная тенденция в ремонте проглядывается – замена вышедшего из строя узла постепенно побеждает. Причем ремонт «в гараже на коленке» уже не удается. Поэтому неудивительно, что в последние годы значительно возросли требования к квалификации ремонтников, ощутимо выросла стоимость ремонта, а сам процесс стал сводиться больше к замене деталей, нежели к их восстановлению.

Есть и другая тенденция, когда производитель не дает запчастей вообще – только двигатель в сборе. И ремонтникам остается только поменять весь двигатель, вместо того чтобы его ремонтировать. А зачем чинить, если двигатели непрерывно усложняются, а квалифицированная ручная работа дорожает еще быстрее?

И наконец, «контрактные» моторы.

В заключение отметим: модные сегодня «контрактные» моторы становятся похожи на пресловутый «МММ». Нет в мире такой страны-«донора», где бы существовало столько двигателей с большим остатком ресурса. А поскольку двигатели современных легковых автомобилей рассчитаны на конечный и весьма ограниченный пробег, то покупка такого мотора давно стала лотереей – в которой, как известно, выигрывает один из тысяч. В лучшем случае.

А остальным предлагается раз в 10-20 тыс км купить очередной «билет» – пока не будет выбран их «лимит» на ремонт или замену мотора на новый.

  • Александр Хрулев, канд. техн. наук, директор фирмы «АБ-Инжиниринг»

Параметры двигателей автомобиля

Сердце автомобиля – ДВС или двигатель внутреннего сгорания, сложный технологический узел, обладающий множеством параметров. Их необходимо знать автолюбителю , чтобы ориентироваться при выборе автомобиля и ориентироваться во время эксплуатации и при ремонте. Наиболее значимыми параметрами являются:

  • Объем камер сгорания – определяет показатель расхода топлива и в значительной степени мощности;
  • Мощность – измеряется в киловаттах, но чаще используются лошадиные силы;
  • Крутящий момент – тяговое усилие;
  • Расход топлива – показатель указывается в литрах на 100 км. При этом учитываются дорожные условия: город, шоссе, смешанный режим;
  • Расход масла — тут важно учитывать тип, а порой и марку потребляемого масла.

Типовые параметры работы двигателей

Существует разделение ДВС на такие типы:

  • Бензиновые – часто используются в гражданском автомобилестроении, наиболее распространенный тип;
  • Дизельные – эти агрегаты отличаются надежностью и экономичностью. При этом несколько уступают бензиновым аналогам в динамике (набор скорости), но выигрывают по показателям проходимости. Широко используются военными, распространены в гражданском автомобилестроении;
  • Газовые – используют в качестве топлива сжиженный, природный, сжатый газ, который закачивается в специальные баллоны;

В список можно включить гибридные газодизельные агрегаты и роторно-поршневые. Последний тип широко использовался авиацией до середины XX века, в современных условиях встречается редко.

Количество цилиндров двигателя

Количество цилиндров в ДВС определяют его мощность. В процессе технической и технологической эволюции их количество постепенно увеличилось с 1 до 16. С увеличением количества цилиндров сами агрегаты становились больше. Решением в части экономии пространства стала концепция расположения цилиндров.

Расположение цилиндров

Существует такое понятие, как конфигурация двигателя, она определяется компоновкой цилиндров, их расположением. Можно выделить 2 основных типа – рядный, когда цилиндры расположены в ряд и V-образный. Второй тип наиболее часто используется в современном автопроме. В этом случае цилиндры располагаются под углом и соединяются с коленчатым валом, образуя латинскую букву V. Такая компоновка имеет подвиды:

  • W-образное расположение цилиндров;
  • Y-образное расположение цилиндров.

Реже применяются компоновки, образующие форму латинских букв U и H.

Объем двигателя

Рабочий объем ДВС определяет его мощность. Этот параметр измеряется в см3, но чаще в литрах. Он определяется путем суммирования внутреннего объема всех цилиндров силового агрегата. За основу в вычислениях берется поперечное сечение цилиндра и умножается на длину хода по нему поршня. В результате получается рабочий объем.
Параметр также определяет во многих странах мира сумму сборов. Соответственно чем больше объем, тем мощнее двигатель, а значит, его владелец заплатит больший взнос. Перспективным направлением разработок современности являются ДВС с изменяемым объемом. Это технология, когда при определенных условиях цилиндры отключаются.

Материал, из которого изготавливается двигатель

Основным материалом в производстве двигателей являются металлы и их сплавы:

  • Чугун – обеспечивает надежность и прочность, но минусом является внушительный вес;
  • Алюминиевые сплавы – дают неплохую прочность, при этом легкие. Недостаток – большая стоимость;
  • Магниевые сплавы – наиболее дорогостоящий материал, отличается высокой прочностью.

Многие производители автомобилей комбинируют материалы. Это во многом диктуется принадлежностью модели к тому или иному классу, что ставит ее в определенные ценовые рамки.

Мощность двигателя

Основополагающий параметр ДВС. Он измеряется в лошадиных силах, реже в кВт (киловатты). Мощность определяет скоростной предел и динамику разгона. Это еще один важный момент в условиях высокой конкуренции между производителями. Серьезная борьба идет в сегменте премиумных, спортивных автомобилей, а также в классе роадстеров и мускулкаров. Здесь разгон от 0 до 100 км/ч играет важную роль и может быть меньше 4 секунд.

Крутящий момент

Крутящий момент – параметр, определяющий тяговую силу мотора, обозначается Н/м (Ньютоны на метр). Значение непосредственно связано с мощностью и динамикой, хотя и не является для них определяющим. В значительной степени крутящий момент влияет на «эластичность» силового агрегата. Под этим словом подразумевается возможность ускоряться при низких оборотах. Соответственно, чем больше ускорение, тем эластичней мотор.

Расход топлива

Показатель потребления топлива двигателем зависит от его рабочего объема, а соответственно мощности. Основополагающую роль играет тип топливной системы:

Измеряется показатель в литрах на 100 км. Техническая документация современных автомобилей предоставляет данные о расходе топлива при нескольких режимах движения: езда по городу, трассе, смешанный тип. В некоторых моделях, преимущественно внедорожниках, указывается расход при движении в условиях бездорожья, так как задействуются все 4 колеса и потребление бензина, дизеля значительно возрастает.

Тип топлива

ДВС могут потреблять разные виды топлива, но в основном используются:

  • Бензин – продукт переработки нефти-сырца или вторичной перегонки нефтепродуктов. Основополагающим показателем является октановое число, которое указывается в цифрах. Буквенное сочетание, стоящее перед цифрами «АИ» означает:
    А – бензин автомобильный;
    И – октановое число определено исследовательским способом. Если этой буквы в маркировки нет, значит, октановое число выведено моторным методом.
    Российские стандарты предусматривают такие марки бензина: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее востребованными в настоящее время являются марки с октановым числом 92,95,98;
  • Дизель или дизельное топливо – получается путем промышленного перегона нефти. В его состав входят 2 вещества:
    1. Цетан – легковоспламеняющийся компонент, чем его содержание больше, тем выше качество топлива;
    2. Метилнафталин – не горючий компонент.
    Основополагающими характеристиками дизеля являются: прокачиваемость и воспламеняемость. В зависимости от спецификации подразделяется на: летнее, зимнее, арктическое (ориентировано на использование при экстремально низких температурах).

Также ДВС в качестве топлива может использовать газы: метан, пропан, бутан. Для этого на автомобиль устанавливаются специальные системы.

Расход масла

Показатель расхода масла указывается производителем автомобиля в технической документации к нему. Нормальным считается потребление смазки в соотношении 0,8–3% от потребляемого количества топлива. Также на этот показатель влияет размер двигателя, он увеличивается на больших, мощных агрегатах, особенно дизельных.
Различают расход масла:

  • Штатный – испарение смазочного материала с цилиндров, выдавливание через картер газами, смазка компрессора турбины;
  • Нештатный – течи уплотнений, потеря масла через сальники коленвала, маслосъемные поршневые кольца, перемычки поршня, когда происходит их разрушение.

К чрезмерному расходу приводит использование масла низкого качества и несоответствующей требованиям технической эксплуатации марки.

Ресурсная прочность

Ресурсная прочность – показатель, определяющий частоту проведения ТО. Измеряется пробегом. Оптимальное количество пройденных километров от 5000 до 30 000. Этот показатель дает возможность рассчитать максимальный срок эксплуатации силового агрегата.

Тип топливной системы

На бензиновые и дизельные моторы устанавливаются разные типы топливных систем. Бензиновые агрегаты могут оснащаться карбюраторной или инжекторной системой. Первая основана на механическом принципе, подача топлива регулируется дроссельной заслонкой. Второй тип – инжекторный позволяет осуществлять настройки с помощью электронных средств. Это значительно увеличивает КПД двигателя, сокращает расход топлива.
Дизельные агрегаты оснащаются ТНВД (топливными насосами высокого давления). Это устройство считается устаревшим и ненадежным. Чаще всего оно используется совместно с форсунками, обладающими функциями насоса. Но сами по себе они не могут обеспечить стабильную работу двигателя.

Тип бензиновой системы впуска

Существует 2 разновидности топливных бензиновых систем: карбюраторная, инжекторная. Они отличаются конструктивным устройством, а также принципами подачи топлива в цилиндры:

  • Карбюратор вливает бензин сплошным потоком, что затрудняет его смешивание с воздухом и детонацию. Это приводит к увеличенному расходу топлива, снижению технических характеристик мотора;
  • Инжекторная система превращает топливо в мелкодисперсную субстанцию – распыляет его. Это дает ему возможность быстро смешиваться с воздухом внутри цилиндра и приводит к увеличению характеристик двигателя и уменьшению расхода топлива.
Читайте также:  Эксцентриковый самоцентрирующий патрон

Тип бензиновой системы впрыска

Существует одноточечная и многоточечная система впрыска. Первая не используется на современных моторах, вторая, в свою очередь, многоточечная система бывает:

  • Распределенной . Она обеспечивает стабильную работу силового агрегата, но не обеспечивает высокую динамику и не увеличивает мощность;
  • Прямой . В этом случае обеспечивается оптимальный расход топлива, увеличивается мощность двигателя и его ресурсная прочность. Недостатком системы является нестабильность работы на малых оборотах. Также минусом можно считать высокую требовательность к качеству бензина.

Дизельная система впрыска

Классическая схема впрыска топлива дизельного ДВС выглядит так:

  • ТНВД – топливный насос высокого давления подает горючее в рампу;
  • В рампе дизельное топливо нагнетается и с помощью форсунок-насосов подается в камеру сгорания.

На сегодняшний день это наиболее надежная схема впрыска дизельного топлива.

Форсунки впрыска

По принципу работы форсунки впрыска бывают:

Последние обеспечивают плавную работу двигателя. Больше ни на какие характеристики мотора форсунки впрыска не влияют.

Количество клапанов

Клапана, их количество влияет на показатель мощности мотора. Считается, что при большем количестве клапанов, работа двигателя становится плавнее. Устанавливаются они на впуск и выпуск цилиндра от 2 до 5 штук. Недостатком большого количества клапанов является увеличенный расход топлива.

Компрессор

Главная функция компрессора – повышение мощности ДВС без увеличения его размеров. Это делается с помощью нагнетания в камеру сгорания большего объема воздуха, что позволяет делать взрыв топливной смеси более мощным. Устанавливается компрессор на впускную систему автомобиля.
Компрессор приводится в движение механическим способом через соединение с коленвалом. Это делается посредством ремня или цепи. Турбокомпрессор нагнетает воздух под действием потока газов, которые крутят турбину, отвечающую за подачу дополнительной порции атмосферной массы.
Компрессоры по принципу подачи воздуха делятся на:

  • Центробежные – простая конструкция, где нагнетателем является крыльчатка;
  • Роторные – воздух нагнетается кулачковыми валами;
  • Двухвинтовые – функции нагнетателей выполняют винты, расположенные параллельно друг другу.

Система газораспределения

ГРМ или газораспределительный механизм отвечает за потоками газов в цилиндре. Он также выполняет функцию переключателя фаз процесса распределения. Принцип действия основан на блокировании и открывании впускных и выпускных отверстий камер сгораний. Это делается при помощи регулировочных элементов:

  • Клапанов;
  • Валов с приводами;
  • Толкателей;
  • Коромысел;
  • Шлангов.

По принципу управления процессом распределения газов ГРМ разделяются на:

6 самых надежных двигателей (из тех, что еще продаются)

Иногда у автопроизводителей получаются очень высокоресурсные моторы. Все они, как правило, имеют общие технические решения. Вот какие автомобили еще можно купить сегодня с «долгоиграющими» силовыми агрегатами.

Надежными чаще всего получаются наиболее простые по конструкции двигатели. Средние по рабочему объему, лишенные в большинстве случаев турбонаддува и непосредственного впрыска топлива. Такие моторы можно считать устаревшими, но именно они обладают относительно большим ресурсом.

Моторы Renault семейства К

K7M — один из наиболее надежных и неприхотливых моторов с большим ресурсом. Его до сих пор устанавливают на самые простые комплектации автомобилей Renault Logan и Sandero. Небольшой рабочий объем в 1,6 л, восьмиклапанная конструкция и крайне невысокая форсировка — мощность 82–87 л.с., обеспечили ему ресурс до 400 000 км и иногда даже более этого. Блок цилиндров чугунный, несклонная к масложору конструкция поршневой группы. Хорошая стойкость к небольшому перегреву. При использовании качественных расходных материалов, своевременной установке хороших комплектующих типа ремня ГРМ с роликами, насоса охлаждающей жидкости и своевременной регулировке клапанов мотор показывает чудеса надежности.

Мотор требует минимального обслуживания благодаря гидрокомпенсаторам в приводе клапанов. Надежность агрегата почти не уступает маломощной 8-клапанной версии.

Toyota 2AR-EE

Конечно, времена тойотовских моторов с ресурсом за 800 000 км безвозвратно канули в Лету, но на народных любимцев RAV4 и Camry, а также на минивэн Alphard устанавливают очень неплохие двигатели 2AR-EE. В разных исполнениях мощность этого мотора рабочим объемом 2,5 л составляет 165–180 л.с. Мотор — с алюминиевым блоком цилиндров и залитыми чугунными гильзами. ГРМ — цепной, 16-клапанный с гидрокомпенсаторами. Самое малое техобслуживание с заменой масла, как у любого тойотовского агрегата — раз в 10 000 км, это очень полезно для моторов, которые эксплуатируются в условиях постоянных пробок. Ресурс мотора превышает 300 000 км. Цепь ГРМ придется обновить на 150 000 км. Некоторые проблемы у этого мотора все же встречаются, но довольно редко. Иногда отмечается повышенный шум на холодную муфт системы изменения фаз газораспределения. Но при прогреве все звуки пропадают. Лишь насос охлаждающей жидкости требует особого внимания из-за частого возникновения течи.

Toyota 1VD-FTV

Второй долговечный мотор того же производителя — дизельный 8-цилиндровый 4.5-литровый агрегат 1VD-FTV, который ставится на большие и мощные внедорожники. Мощность двигателя в зависимости от исполнения может быть от 202 до 286 л.с. Двигатели с двумя турбокомпрессорами устанавливали на Land Cruiser 200 и Lexus LX450d. Еще выпускается упрощенная, дефорсированная версия с одним турбокомпрессором для Land Cruiser 70.

Если не экономить на качественном масле и хорошем топливе, то ресурс такого мотора может превышать 400 000 км.

Honda R20A

В японском автопроме особняком стоит фирма Honda. Начав производство автомобилей, уже имея большой мотоциклетный опыт, инженеры зачастую применяли нестандартные решения. Чего только стоят моторы девяностых годов, которые при рабочем объеме 1,6 л развивали 160 и более лошадиных сил. Такая форсировка достигалась благодаря весьма высоким оборотам — более 7000.

Мы рассмотрим гораздо более приземленный 2-литровый бензиновый безнаддувный двигатель R20A. Он изготавливается японским концерном с 2006 г. и устанавливается на автомобили Civic, Accord и на кроссовер CR-V. Несмотря на то, что двигатель целиком «алюминиевый» и имеет довольно высокую мощность (до 155 л.с), его ресурс часто превышает 300 000 км. Это двигатель с одним распределительным валом, который приводит цепь. За регулировку фаз отвечает система i-VTEC. Очень кратко: такая система в нужные моменты «подключает» кулачки распределительного вала с разными профилями. Это обеспечивает оптимальное наполнение цилиндров в широком диапазоне частот вращения и нагрузок. Правда, система не содержит гидрокомпенсаторов: приходится не реже одного раза в 80 000 км регулировать зазоры в клапанах.

Hyundai/Kia G4FC

Возможно, не все со мной согласятся, но я назову еще одним надежным мотором корейский агрегат G4FC. Двигатель выпускался с рабочим объемом 1,4 и 1,6 литра с начала производства Соляриса, то есть с 2010 года. В настоящее время время мотор обрел второй фазовращатель, и продолжает устанавливаться на Hyundai Creta, Solaris и Kia Rio.

Автомобили, как и моторы, разошлись огромным тиражом по всей стране. Все эти машины концерна Hyundai/Kia признаны народными любимцами, и двигатели тоже показывают очень неплохие результаты. Моторы с алюминиевыми блоками цилиндров, цепным приводом распределительных валов и даже с регулировкой зазоров в клапанах заменой стаканчиков показали себя надежными и ресурсными агрегатами. Цепь ходит не меньше 150 000 км, примерно к этому же пробегу возникает и реальная необходимость регулировки клапанов. Поршневая, при хорошем масле, может прожить до 250 000–300 000 км и даже больше. При использовании топлива невысокого качества возможен преждевременный выход из строя каталитического нейтрализатора. Считается, что частицы керамики от разрушившегося блока попадают в поршневую двигателя, тем самым убивая его. Тогда предстоит замена каталитического нейтрализатора либо, что нехорошо, удаление.

Современные моторы по своему ресурсу, к сожалению, далеки от былых «миллионников». Сейчас 300 000–400 000 пробега — уже большая удача. Причина — машины создают теперь не инженеры, которые старались обеспечить максимальный ресурс, а маркетологи, которые всячески лоббируют запрограммированный выход автомобиля из строя, чтобы вынудить потратиться на его ремонт или приобретение нового автомобиля.

В комментариях предлагаю рассказать, моторы каких автомобилей, побывавшие в ваших руках, имели большие беспроблемные пробеги.

8 самых известных типов двигателей в мире и их отличия

После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире.

Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы.

1. Оппозитный двигатель

В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.

Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС.

Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются.

2. Рядный двигатель

В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.

3. Двигатель V-типа (V-образный силовой агрегат)

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше.

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG.

4. Квазитурбинный двигатель

Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии.

В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа.

5. Роторный двигатель

Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.

Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.

В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов.

6. Двигатель Green Steam

Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.

Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д.

Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.

7. Двигатель Стирлинга

Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух.

Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок.

То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество.

8. Радиальный двигатель (звездообразный)

Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна.

Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму.

Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.

Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.

Ссылка на основную публикацию