Шпиндельные оправки

Osnastka.pro

Шпиндельная оснастка фрезерных станков. Особенности и сравнительный анализ.

Если сравнивать отдельные системы инструментальных оправок , их технические характеристики и их сопряжение со шпинделем станка, становится ясным, что оптимальной системы инструментальной оправки для всех случаев применения не существует. Выбор системы ― это всегда уникальное решение, которое зависит от множества параметров. Инструментальная оправка не может рассматриваться как изолированная часть, ее необходимо рассматривать во взаимодействии со всей системой, состоящей из зажима заготовки, инструмента, инструментальной оправки, шпинделя и станка. В качестве крайнего сопряжения с обрабатываемой деталью, инструментальная оправка играет важную роль не в последнюю очередь потому, что способна хотя бы частично компенсировать слабые стороны всей системы.

Выбор идеальной системы инструментальной оправки должен происходить в несколько этапов. Во-первых, очень важно определить основные критерии, существенно влияющие на общую стабильность процесса. Сюда входят требуемое усилие зажатия, радиальная жесткость, выступающий контур и, если учитывается, стабильность в высокоскоростных применениях. На втором этапе центр внимания сосредотачивается на критериях качества, влияющих на качество, точность и производительность технологического процесса. Сюда входят точность обработки и повторяемость, качество балансировки, поглощение вибраций, подача охлаждения и возможность настройки длины. И наконец, на третьем этапе, рекомендуется рассмотреть экономические критерии в рамках анализа экономической эффективности инвестиций, критерии “затраты-выгоды” (то есть оценку затрат, срока службы, гибкости и возможности повторного использования, а также затрат на выполнение предстоящих операций).

Базовые критерии жизненно важны для стабильности процесса
Зажимное усилие инструментальной оправки определяет, до какой степени момент на сопряжении оправки и инструмента будет контролируемым. Если зажимное усилие достаточно по величине, то зацепление режущей кромки инструмента с материалом будет равномерным. Если усилие недостаточно, инструмент начнет проворачиваться в оправке, и рез будет нестабильным. В крайних случаях инструмент может быть полностью выброшен из оправки. Последние технологические разработки позволяют увеличить усилия зажатия гидравлических зажимных патронов до такого уровня, что стала возможной даже силовая механическая обработка деталей. Имея диаметр 20 мм, современные гидравлические зажимные оправки способны передавать моменты величиной до 900 Нм.

Высокая радиальная жесткость обеспечивает значительные усилия резания (например, большие величины и высокие скорости подачи инструмента). Поэтому она является важным критерием в случае силовой обработки, поскольку оказывает решающее влияние на время обработки и, тем самым, на производительность, а также на возможный вылет инструмента. Радиальная жесткость зависит от свойств материала инструментальной оправки (модуля Е) и его обработки, от геометрической формы оправки и от способа ее встраивания в общую систему станка, в частности, от сопряжения со шпинделем станка. Проще говоря: чем короче инструментальная оправка, чем больше ее диаметр, тем более однородной является система, состоящая из инструмента и его крепления, тем прочнее крепление инструмента и тем шире опора для держателя на шпинделе, и, следовательно, больше радиальная жесткость.

Если заготовки обрабатываются на современных 5-осевых станках всего за два шага зажатия, доступ к заготовке играет существенную роль. Для этого необходимы тонкие инструментальные оправки, способные передавать достаточно высокий момент, обеспечивая при этом высокую точность обработки детали. В случае необходимости, в особо узких местах, в качестве альтернативы, используются удлинительные вставки, устанавливаемые между инструментом и оправкой. В отличие от инструментальных оправок, оптимально сопрягаемых с интерфейсом шпинделя, удлинители инструмента могут использоваться достаточно гибко. Они доступны с различными технологиями зажатия.

Если во время высокоскоростной резки скорости вращения шпинделя достигают 80 000 об/мин и более, инструментальные оправки должны соответствовать особым условиям с точки зрения геометрии, концентричности, качества балансировки, а также с точки зрения надежности при смене инструмента. Чем меньше диаметр зажатия, тем быстрее не только механические универсальные, но и терморазжимные и гидравлические инструментальные оправки достигают пределов своих возможностей, будь то потому, что доступное пространство недостаточно для соответствующего зажимного механизма или потому, что инструменты таких небольших размеров невозможно надежно заменять или точно регулировать. Другие технологии зажатия, такие как технология полигонального зажатия, которая не содержит подвижных частей, также добиваются признания.

Высокопроизводительные гидравлические зажимные оправки, такие как SCHUNK TENDO E compact, имеют высокие зажимные усилия и могут надежно передавать моменты до 900 Нм, в зависимости от зажимаемого диаметра.

Критерии качества определяют точность и производительность.
Точность выбега: в случае прецизионной обработки точность выбега инструментов и всей приводной системы имеет решающее значение. Они определяют, соответствуют ли требованиям размеры и допуски. Кроме того, точность выбега существенно влияет на износ режущей кромки инструмента и на срок службы шпинделя станка. Если зажимаемый инструмент не вращается соосно к инструментальной оправке, существует опасность возникновения погрешностей, и требуемые размеры заготовки получены не будут. Более того, во время обработки может начаться биение инструмента, что приведет к образованию микроскопических повреждений лезвия и ускорит его износ.

Повторяемая точность: Точность повторения инструментальной оправки показывает, насколько хорошо крепление инструмента может воспроизводить определенные параметры при нескольких последовательных попытках. Для современной прецизионной обработки важна не столько абсолютная точность, сколько точность повторения операций станка, и, следовательно, инструментальной оправки. В современных станках с ЧПУ систематические ошибки могут сравнительно легко компенсироваться с помощью алгоритмов управления станком. Однако это возможно только в том случае, если обеспечивается высокая степень повторяемости, т. е. если все соответствующие отклонения будут в большой степени идентичны. Таким образом, точность повторения инструментальной оправки является решающей при определении того, какая точность в конечном итоге будет достигнута на заготовке.

Качество балансировки: Говоря проще, дисбаланс возникает в том случае, когда масса вращающегося тела распределена неравномерно, то есть либо центр тяжести не находится на оси вращения (статический дисбаланс), либо главная ось инерции не параллельна оси вращения (динамический дисбаланс). Инструментальные оправки часто сочетают в себе статический и динамический дисбаланс. Причинами могут быть: технические особенности конструкции инструментальной оправки или самого инструмента (например, односторонние инструменты); асимметричный дизайн инструментальной оправки (например, расположение установочных канавок или зажимных винтов); асимметричное распределение массы вследствие погрешностей изготовления; несоосность или ошибки при монтаже вращающегося тела. Инструментальные оправки с большой разбалансировкой имеют отрицательные воздействия в нескольких аспектах: более низкое качество поверхности вследствие вибраций на инструментальной оправке; ограниченные скорости резания; снижение точности обработки; более короткий срок службы инструмента; повреждение подшипника станка.

Поглощение вибраций: В зависимости от частотной характеристики отклика всей системы, включающей станок, инструментальную оправку, инструмент, зажим заготовки и заготовку, вибрации возникают во время любого процесса обработки. Они могут оказать значительное влияние на результат обработки и привести к увеличению износа инструмента, поломке инструмента или повреждению станка. Подобно автомобильному амортизатору, инструментальные оправки способны подавлять вибрации и поддерживать плавное и ровное резание, в зависимости от технологии зажатия. Это позволяет снизить уровень шума, улучшить качество поверхности заготовки, продлить срок службы инструмента и защитить шпиндель.

Подача охлаждающей жидкости: охлаждающая смазка выполняет множество функций в процессе механической обработки. Она удаляет стружку, уменьшает тепло и трение, обеспечивает равномерную температуру инструмента и заготовки и соблюдение заданных допусков. В зависимости от типа подачи охлаждающей жидкости, можно различать внешнее, периферийное и внутреннее охлаждение. Внутреннее охлаждение обладает особыми преимуществами: СОЖ поступает точно на режущую кромку, не требуя совмещения сопла подачи охлаждающей жидкости вручную; стружка при этом надежно удаляется из узких и глубоких пазов: даже при сверлении глубоких отверстий режущая кромка будет охлаждаться эффективно. В результате продлевается срок службы инструмента, а показатели процесса тоже значительно увеличиваются.

Производитель SCHUNK представляет интеллектуальный держатель инструмента гидравлического расширения iTENDO, который контролирует процесс обработки непосредственно на инструменте и позволяет в режиме реального времени контролировать параметры резки. Держатель инструмента обеспечивает полное документирование стабильности процесса, мониторинг предельных значений без участия оператора, обнаружение поломки инструмента и контроль скорости вращения и скорости подачи в режиме реального времени. Во время обработки интеллектуальный держатель инструмента постоянно анализирует процесс обработки. Если процесс становится нестабильным, он может быть остановлен в режиме реального времени и без вмешательства оператора, уменьшен до ранее определенных базовых параметров или адаптирован до тех пор, пока срез не вернется к стабильному диапазону.

Экономические критерии влияют на эффективность обработки.
Хотя основные производственные показатели и критерии качества непосредственно определяют процесс обработки и всегда считаются приоритетными, экономические критерии помогают прийти к окончательному решению с экономической точки зрения. Дополнительно к затратам на приобретение инструментальной оправки, необходимо учитывать прямые затраты: срок службы, инвестиции в периферийные устройства, эксплуатационные расходы (смена инструмента, очистка, предварительная настройка длины и обслуживание), гибкость, потребление энергии при смене инструмента и повторное использование креплений. С другой стороны, косвенные затраты играют особенно важную роль. К ним относятся, прежде всего, затраты на инструмент (поскольку срок службы инструмента может значительно отличаться в зависимости от используемой зажимной системы), а также затраты/экономия, связанные с уменьшением или увеличением производительности. В течение срока службы косвенные затраты на инструментальную оправку могут привести к экономии, выражаемой пятизначным числом. Кроме того, в последнее время приобретает быстро растущее значение предотвращение несчастных случаев.

Рассмотрим особенности различной зажимной оснастки (патронов) для обрабатывающих центров.
В литературе (каталогах) можно встретить вот такой сравнительный анализ преимуществ свойств различной шпиндельной оснастки (страница из каталога Schunk)

ГОСТ 17528-72
Оправки кулачковые шпиндельные. Конструкция и размеры

Купить ГОСТ 17528-72 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО “ЦНТИ Нормоконтроль”

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Распространяется на кулачковые шпиндельные оправки, предназначенные для установки и закрепления толстостенных заготовок при механической обработке на металлорежущих станках.

  • Заменяет МН 5267-63
  • Заменен на ГОСТ 31.1066.04-97 «Приспособления к металлорежущим станкам. Оправки кулачковые. Общие технические условия» ИУС 8-1998

Данные о замене опубликованы в ИУС 8-1998

Оглавление

1 Конструкция и размеры оправок

2 Конструкция и размеры корпусов (деталь 1)

3 Конструкция и размеры кулачков (деталь 2)

4 Конструкция и размеры втулок (деталь 3)

5 Конструкция и размеры пружинных колец (деталь 4)

6 Конструкция и размеры пружин (деталь 5)

7 Конструкция и размеры гаек (деталь 6)

Дата введения01.01.1974
Добавлен в базу01.10.2014
Завершение срока действия01.01.1999
Актуализация01.01.2019

Этот ГОСТ находится в:

  • Раздел Экология
    • Раздел 25 МАШИНОСТРОЕНИЕ
      • Раздел 25.060 Станочные системы
        • Раздел 25.060.20 Делительные головки и зажимные приспособления для обрабатываемых деталей и инструментов
  • Раздел Электроэнергия
    • Раздел 25 МАШИНОСТРОЕНИЕ
      • Раздел 25.060 Станочные системы
        • Раздел 25.060.20 Делительные головки и зажимные приспособления для обрабатываемых деталей и инструментов

Организации:

02.02.1972УтвержденГосстандарт СССР353
ИзданИздательство стандартов1972 г.
РазработанМинистерство станкостроительной и инструментальной промышленности
РазработанУправление станкоинструментальной промышленности и межотраслевых производств Государственного комитета стандарта Совета Министров СССР
РазработанВНИИНМАШ

Spindle cam arbors. Design and dimensions

  • ГОСТ 24705-81Основные нормы взаимозаменяемости. Резьба метрическая. Основные размеры. Заменен на ГОСТ 24705-2004.
  • ГОСТ 22038-76Шпильки с ввинчиваемым концом длиной 2d. Класс точности В. Конструкция и размеры
  • ГОСТ 4543-71Прокат из легированной конструкционной стали. Технические условия. Заменен на ГОСТ 4543-2016.
  • ГОСТ 2789-73Шероховатость поверхности. Параметры и характеристики
  • ГОСТ 16093-81Основные нормы взаимозаменяемости. Резьба метрическая. Допуски. Посадки с зазором. Заменен на ГОСТ 16093-2004.
  • ГОСТ 14959-79Прокат из рессорно-пружинной углеродистой и легированной стали. Технические условия. Заменен на ГОСТ 14959-2016.
  • ГОСТ 10549-80Выход резьбы. Сбеги, недорезы, проточки и фаски
  • ГОСТ 14034-74Отверстия центровые. Размеры
  • ГОСТ 16118-70Пружины винтовые цилиндрические сжатия и растяжения из стали круглого сечения. Технические условия
  • ГОСТ 25557-82Конусы инструментальные. Основные размеры. Заменен на ГОСТ 25557-2006.
  • ГОСТ 2848-75Конусы инструментов. Допуски. Методы и средства контроля
  • ГОСТ 8820-69Канавки для выхода шлифовального круга. Форма и размеры
  • ГОСТ 9389-75Проволока стальная углеродистая пружинная. Технические условия
  • ГОСТ 1759-70Болты, винты, шпильки и гайки
  • ГОСТ 9150-59Резьба метрическая для диаметров от 1 до 600 мм. Основные размеры
  • ГОСТ 5950-73Прутки и полосы из инструментальной легированной стали. Технические условия. Заменен на ГОСТ 5950-2000.
  • Показать все

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

ОПРАВКИ КУЛАЧКОВЫЕ

КОНСТРУКЦИЯ И РАЗМЕРЫ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ СОВЕТА МИНИСТРОВ СССР

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

ОПРАВКИ КУЛАЧКОВЫЕ

КОНСТРУКЦИЯ И РАЗМЕРЫ

Отверстие центровое Р ГОСТ W034-68

Пример условного обозначения корпуса с конусом

3. КОНСТРУКЦИЯ и РАЗМЕРЫ КУЛАЧКОВ (ДЕТАЛЬ 2)

3.1. Конструкция и размеры кулачков должны соответствовать указанным на черт. 3 и в табл. 3.

Примечание. Размер d и шероховатость поверхности в скобках — после сборки.

Морзе 4, размером d=36 мм: ГОСТ 17528-72

Пример условного обозначения кулачка размером d —36 мм:

3.2. Материал — сталь марки 9ХС по ГОСТ 5950-63.

3.3. Твердость HRC 42. 48. Допускается для шлифовальных работ применение кулачков с твердостью HRC 58. 62.

3.4. Покрытие — Хим. Оке. прм (обозначение покрытия — по ГОСТ 9791-68). По соглашению сторон допускается применение других видов защитных покрытий.

3.5. Неуказанные предельные отклонения размеров: охватывающих—по Л7, охватываемых — по Вт, прочих — СМ8.

3.6. Размер Н и угол а кулачков изготавливать одновременно для комплекта из трех кулачков.

3.7. Разность размеров Н на кулачках в пределах одного комплекта — не более 0,02 мм.

3.8. Разность угла а на кулачках в пределах одного комплекта— не более 5′.

4. КОНСТРУКЦИЯ И РАЗМЕРЫ ВТУЛОК (ДЕТАЛЬ 3)

4.1. Конструкция и размеры втулок должны соответствовать указанным на черт. 4 и в табл. 4.

V4 fr)

Пример условного обозначения втулки размерами D=25 мм, L=40 мм:

4.2. Материал — сталь марки 9ХС по ГОСТ 5950-63.

4.3. Твердость — HRC 55. 60.

4.4. Покрытие — Хим. Оке. прм (обозначение покрытия — по ГОСТ 9791-68), кроме шлифованных поверхностей.

По соглашению сторон допускается применение других видов защитных покрытий.

4.5. Неуказанные предельные отклонения размеров: охватывающих — по Л7, охватываемых — по В7, прочих— CMS.

4.6. Разность размеров h в пределах одной втулки — не более 0,02 мм.

4.7. Разность углов а в пределах одной втулки — не более 5′.

5. КОНСТРУКЦИЯ и РАЗМЕРЫ ПРУЖИННЫХ КОЛЕЦ (ДЕТАЛЬ 4)

5.1. Конструкция и размеры колец должны соответствовать

указанным на черт, бив табл. 5,

* Размеры для справок.

Размеры в мм Таблица 5

Масса 10 шт. в кг я*

Пример условного обозначения пружинного кольца размерами D=2,5 мм, #о=64 мм:

_ Кольцо 7112-08511004 ГОСТ 17528—72 _

5,2> Материад – сталь марки 65Г ГОСТ 1050-60. *

5.3. Модуль сдвига G=8000 кгс/мм 2 .

5.4. Направление навивки пружины —правое.

5.5. Остальные технические требования — по ГОСТ 13165-67.

6. КОНСТРУКЦИЯ и РАЗМЕРЫ ПРУЖИН (ДЕТАЛЬ 5)

* Размеры для справок.

6.1. Конструкция и размеры пружин должны соответствовать указанным на чсрь бив табл. 6.

Длина разве р-нутой пружины

Масса 100 шт. в кг «

Пример условного обозначения пружины размером D—3 мм:

6.2. Материал — проволока Н-0,5 ГОСТ 9389-60.

6.3. Модуль сдвига G=8000 кгс/мм 2 .

6.4. Направление навивки пружины — правое.

6.5. Остальные технические требования — по ГОСТ 13165-67.

7. КОНСТРУКЦИЯ И РАЗМЕРЫ ГАЕК (ДЕТАЛЬ 6)

7.1. Конструкция и размеры гаек должны соответствовать указанным на черт. 7 и в табл. 7.

Пример условного обозначения гайки размерами d=M10 и л = 25 мм:

7.2. Материал — сталь марки 40Х по ГОСТ 4543-61.

7.3. Твердость — HRC 33. 38.

7.4. Покрытие— Хим. Оке. прм (обозначение покрытия — по ГОСТ 9791-68). По соглашению сторон допускается применение других видов защитных покрытий.

7.5. Неуказанные предельные отклонения размеров: охватывающих — по А7, охватываемых — по В7, прочих — СМ&.

РАЗРАБОТАНЫ Государственным проектно-технологическим и экспериментальным институтом (ОРГСТАНКИНПРОМ)

Директор Монахов Г. А.

Начальник отдела нормализации, стандартизации и унификации Смирнов Л. Б.

Руководитель темы Эльнер И. Г.

Исполнители: Петрова В. А., Максаева В. М.

ВНЕСЕНЫ Министерством станкостроительной и инструментальной промышленности

Член Коллегии Трефилов В. А.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением станкоинструментальной промышленности и межотраслевых производств Государственного комитета стандартов Совета Министров СССР

Зам. начальника Управления Григорьев В. К.

Ст. инженер Горнакова Г. С.

Всесоюзным научно-исследовательским институтом по нормализации в машиностроении (ВНИИНМАШ)

Зам. директора института Герасимов Н. Н.

И. о. зав. отделом стандартизации, унификации и агрегатирования станочных приспособлений Леонов С. И.

И. о. от. научного сотрудника Орса А. В,

И. о. ст. научного сотрудника Гуслинская Л. А.

УТВЕРЖДЕНЫ Государственным комитетом стандартов Совета Министров СССР 3 декабря 1971 г. (протокол № 172)

Председатель отраслевой научно-технической комиссии зам. председателя Госстандарта СССР Никифоренко А. М.

Члены комиссии: Бергман В. П., Федин Б. В., Доляков В. Г., Златкович Л. А., Климов Г. Н., Лебедев Г. Я.

ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 2 февраля 1972 г-

Изменение № 1 ГОСТ 17528-72 Оправки кулачковые шпиндельные. Конструкция и размеры

Постановлением Государственного комитета СССР по стандартам от 23.01.81 № 221 срок введения установлен

Вводную часть изложить в новой редакции:

«Настоящий стандарт распространяется на кулачковые шпиндельные оправки» предназначенные для установки и закрепления толстостенных заготовок при механической обработке на металлорежущих станках».

Пункт 1.1. Таблица 1. Графа D, Заменить слова: «Пред. откл. по X» на «поле допуска f7>;

заменить ссылки и обозначения: ГОСТ 11766—66 на ГОСТ 22038-76»

ГОСТ 1478-64 на ГОСТ 1478-75; АМ10Х85 (jgj)40X на MIC—BgX

X65.109.40X.05, АМ10Х90( ^ )40Х на М10-6 gX70.109.40Х.05,

AM10X95(^q) 40Х на М10—6gX75.109.40X.05, AM12XlOO(jg )40Х на М12—

– 6gX75.109.40X.05, АМ12Х110(^)40Х на М12—6*Х85Л09,40Х,05, АМ12Х

Xl20(gQ)40X на М12— 6gX 100.109.40Х.05, АМ16Х150(^ )40Х на М16—6gX

X 120Л09.40Х.05, AM16X160(gg J40X на M16-6gXl30.109.40X.05, АМ20Х

X 180( т^)40Х на M20-6gX 140Л09.40Х.05.

Пункты 1.3—1.5 изложить в новой редакции?

«1.3. Размер d должен быть выполнен после сборки по наименьшему значению с полем допуска Й8 и параметром шероховатости поверхности не грубее tfa=l,25 мкм по ГОСТ 2789-73.

1.4. Допуск радиального биения поверхности Б относительно оси конуса Морзе — 0,02 мм.

1.5. Допуск торцевого биения поверхности В относительно оси конуса Морзе — 0,02 мм».

Пункты 2.1, 3.1. Чертежи 2, 3. Заменить обозначения:

(Продолжение см, ctp. 114) 113

Прежде чем пользоваться сборником стандартов ГОСТ 17528-72— 17531-72 «Оправки кулачковые. Конструкция н размеры», внесите следующие исправления:

к ГОСТ 17528-72 «Оправки кулачковые шпиндельные. Конструкция и размеры»

Таблица 1, графа Дет. 7. Шпилька* по ГОСТ 11765-66

к ГОСТ 17529 «Оправки кулачковые шпиндельные с аажнмом. конструкция и размеры»

к ГОСТ 17530-72 «Оправки кулачковые фланцевые, размеры».

Таблица 2, графа •Дет. 7. Шпилька* по ТОСТ 11765—66

М., Изд-во стандартов, 197°.

Оправки кулачковые шпиндельные. Конструкция и размеры

Оправки кулачковые шпиндельные с пневматическим зажимом. Конструкция и размеры

Оправки кулачковые фланцевые. Конструкция и размеры

Оправки кулачковые фланцевые с пневматическим зажимом. Конструкция и размеры

УДК 621.941.2—229.324.4(087.74) Группа Г27

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ОПРАВКИ КУЛАЧКОВЫЕ ШПИНДЕЛЬНЫЕ

Конструкция и размеры

17528-72

Spindle cam arbors. Design and dimensions

Взамен MH 5267—63

Постановлением Государственного комитета стандартов Совета Министров СССР от 2JU 1972 г. Jt 353 срок введения установлен

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на кулачковые шпиндельные оправки, предназначенные для установки и закрепления толстостенных заготовок при механической обработке на токарных, круглошлифовальных и других станках.

Стандарт соответствует требованиям рекомендации СЭВ по стандартизации PC 228—64.

1. КОНСТРУКЦИЯ и РАЗМЕРЫ ОПРАВОК

1.1. Конструкция и размеры оправок должны соответствовать указанным на черт. 1 и в табл. 1.

Дет. 4. Кольцо пружинное

Дет. 9. Винт по ГОСТ И78-64

2 | 3 | 1 f 1 1 1 1 »

АМ10Х9б( 2“ кох 40 /

AM12Xl2o( 25) 40Х 50 /

AM20Xl80^ 15 j 40Х

Пример условного обозначения оправок с конусом Морзе 4, размерами d от 36 до 40 мм:

1.2. При поставке оправок для эксплуатации в особых условиях, детали их могут быть изготовлены из других марок стали с механическими свойствами не ниже указанных в настоящем стандарте.

1.3. Размер d должен быть выполнен после сборки по наименьшему значению с предельным отклонением по С3 и шероховатостью поверхности не грубее 7-го класса чистоты.

1.4. Радиальное биение поверхности Б относительно поверхности конуса Морзе — не более 0,02 мм.

1.5. Торцовое биение поверхности В относительно поверхности конуса Морзе — не более 0,02 мм.

1.6. Маркировать: обозначение и товарный знак предприятия-изготовителя.

2. КОНСТРУКЦИЯ И РАЗМЕРЫ КОРПУСОВ (ДЕТАЛЬ /)

2.1. Конструкция и размеры корпусов должны соответствовать указанным на черт. 2 и в табл. 2.

2.2. Материал — сталь марки 20Х по ГОСТ 4543-61.

2.3. Цементировать на глубину 0.8..Л.2 мм: твердость рабочей части — HRC 48. 56, хвостовой части — HRC 35. 40. Резьбу от цементации предохранить.

2.4. Покрытие — Хим. Оке. прм (обозначение покрытия — по ГОСТ 9791-68), кроме поверхности конуса Морзе. По соглашению сторон допускается применение других видов защитных покрытий.

2.5. Неуказанные предельные отклонения размеров: охватывающих— по Ат, охватываемых—по Вт, прочих—CAfg. Допуски на угловые размеры — по 9-й степени точности ГОСТ 8908-58.

2.6. Разность размеров /7 в пределах одного корпуса — не более 0,05 мм.

2.7. Торцовое биение поверхности В относительно поверхности конуса Морзе — не более 0,02 мм.

2.8. Конусы Морзе — по ГОСТ 2847-67. Допуски на конусы — по 4-й степени точности ГОСТ 2848-67.

2.9. Резьба метрическая — по ГОСТ 9150-59. Поле допуска резьбы — 7Н по ГОСТ 16093-70.

2.10. Фаски на резьбу — по ГОСТ 10549-63.

2.11. Канавки для выхода шлифовального круга — по ГОСТ 8820—69.

Оправки для фрезерных станков

Оправки являются оснасткой для фрезерного станка и предназначаются для передачи вращающего момента шпинделя инструменту. Они используются во фрезерных станках всех типов. Конструкция фрезерной оправки зависит от типа станка и используемого инструмента.

Оправка для фрезерного станка имеет такие основные элементы:

1. Конический хвостовик используется для установки оправки в коническое отверстие соответствующего размера шпинделя станка, в зависимости от типа зажима оправки и типа конуса шпинделя на станке, существует большое количество вариантов исполнения.

Конуса фрезерных оправок стандартизированы для удобства подбора инструмента. Весьма популярные в отечественных станках оправки фрезерные 7:24 выполненные по ГОСТ 24644-81 эти оправки имеют зарубежные аналоги, такие как ISO, CAT, BT и т. д. которые различаются только размерностью и вспомогательными элементами. Также часто используется конус Морзе и HSK. Последний вариант применяется на станках с высокой скоростью вращения шпинделя — 15000 об/мин и выше. Если конус оправки не совпадает с конусом шпинделя, то можно использовать переходные втулки.

2. Часть оправки для закрепления инструмента. В зависимости от типа инструмента, существую различные версии этой части.

Основные виды фрезерных оправок:

Примечание: конструкции оправок могут отличаться от указанных ниже, т.к. здесь приведены лишь наиболее популярные виды.

1. Для торцевых фрез

Торцевые фрезы, а также некоторые дисковые, устанавливают на оправках которые имеют короткую цилиндрическую часть. На торце оправки имеются два направляющих сухаря, который защищает фрезу от проворачивания на оправке. Затяжка фрезы производится винтом, вкручиваемым в торец оправки.

2. Для цилиндрических фрез

К фрезам этого типа также относятся дисковые, прорезные, отрезные, фасонные и угловые фрезы, поэтому их крепление выполняется таким же образом. По способу крепления эти фрезы называют насадными, поскольку они надеваются на оправки.

Оправки этого типа могут иметь различную длину части, на которой закрепляются фрезы. В большинстве случаев для защиты инструмента от проворота, посадка на валу оправки осуществляется с помощью шпонки в пазу, который фрезеруют на всю возможную длину установки фрезы. На конце оправки нарезана резьба, на которую накручивается поджимная гайка. Для установки фрезы в нужной части оправки используются втулки, набор которых входит в комплект фрезерного станка. Втулки имеют разную ширину, и путем их подбора фреза размещается в требуемом месте. Для установки удобны регулируемые втулки, которые изменяют свою длину при вращении корпуса.

Длинная оправка для горизонтально фрезерного станка закрепляется вторым концом в серьге хобота. Это обеспечивает достаточную жесткость и позволяет установить на оправку более одного инструмента.

3. Для концевых фрез и сверл

При выборе патрона необходимо определить для каких целей он будет использоваться:

  • для зажима концевой фрезы, сверла, метчика или
  • для обработки стали, чугуна, нержавейки или цветных металлов
  • для черновых, получистовых или чистовых работ
  • большой объем производства или небольшими партиями
  • без применения СОЖ, наружная подача СОЖ через трубки или подача СОЖ через инструмент под давлением

Концевые фрезы имеют меньший диаметр, чем оправка, поэтому они крепятся не поверх нее, а в отверстии. Закрепление фрез и сверл с цилиндрическим хвостовиком диаметром до 20 мм удобнее всего производить в цанговых патронах ER. При больших нагрузках, у цанговых патронов есть вероятность вытягивания фрезы из патрона, однако достаточно неплохая точность по биению и гибкость делает их универсальным патроном для сверления и чистового и получистового фрезерования.

Для чернового фрезерования используют специальные усиленные цанговые патроны с цилиндрической цангой.

Для сверл с цилиндрическим хвостовиком небольшого диаметра так же применяются универсальные сверлильные патроны, в которые можно зажимать инструмент в очень широком диапазоне диаметров, но только сверла, т.к. данные патроны не воспринимают радиальную нагрузку. Усилие зажима у этих патронов меньше чем у цанговых, вследствие меньшей площади контакта с хвостовиком фрезы, а следовательно и вероятность проворота больше. Для выполнения точных работ применяются прецизионные сверлильные патроны.

Так же существует гидравлический цанговый патрон, в которым зажим цанги осуществляется за счет давления специальной жидкости – гидропласта, необходимое давление достигается путем поджима винтом мембрану внутри оправки. Гидравлическая мембрана обеспечивает высокое усилие зажима и точность по биению. Патрон очень прост в обращении и не требует отдельного оборудования, но имеет довольно высокую стоимость.

Другим вариантом зажима инструмента с цилиндрических хвостовиком является патрон с термообжимом. Отверстие в патроне немного меньше, чем диаметр хвостовика, для смены инструмента патрон нагревают индукционной катушкой, чтобы он расширился. Точность по биению очень хорошая при усилии зажима от среднего до высокого.

Необходимо различное тепловое расширение держателя и хвостовика инструмента, поэтому патроны с термообжимом используются в основном для цельных твердосплавных инструментов. Для смены инструмента необходимо специальное нагревательное оборудование, каждый патрон предназначен только для одного диаметра хвостовика и подвода СОЖ. Поэтому термообжим лучше всего подходит для специального производства с инструментальным участком для смены инструмента.

Для более высоких крутящих моментов используются инструменты имеющие хвостовик с лыской, для их зажима используются два типа патрона: патрон для сверл с хвостовиком ISO9766 и патрон Weldon для инструмента с хвостовиком DIN 6535-HB. Лыски обеспечивают сопротивление крутящему моменту и повышают надежность от вытягивания, но радиальное биение инструмента в данных патронах значительно выше чем в цанговых, что предопределяет их использование в основном для черновых работ.

Патрон для сверл с хвостовиком ISO9766 отличается от патрона Weldon лыской во всю длину хвостовика а не короткой, и шлифованной внутренней поверхностью.

Для зажима концевых фрез и сверл с коническим хвостовиком используются специальные патроны с внутренним Конусом Морзе. Для фиксации сверл в таких патронах используется паз под лапку на торце сверла, а для фиксации фрез используется болт заворачивающийся в торец фрезы.

4. Для нарезания резьбы метчиком

Для нарезания резьбы применяются патроны с посадкой под квадратный хвостовик метчика.
Существует довольно много конструкция патронов для нарезания резьбы но можно выделить основные.

На современных фрезерных станках существует два варианта нарезания резьбы метчиком:

А) Обычное резьбонарезание без синхронизации частоты вращения шпинделя с подачей по оси Z

Жесткое нарезание резьбы с синхронизацией частоты вращения шпинделя с подачей по оси Z
При первом варианте нарезания резьбы необходимо использовать специальные компенсирующие погрешность шага по оси Z патроны.

При втором варианте в теории использовать патроны с компенсацией не обязательно, для этого можно применять цанговые патроны с зажимом квадрата метчика четырьмя винтами

но на практике рекомендуют использовать метчиковые патроны типа SynchroFlex, со встроенным гибким элементом

или использованием резиновых цанг

Для нарезания резьбы в глухих отверстиях необходимо использовать патроны с предохранительной муфтой, которая защищает оправку от превышения крутящего момента.

Так же используются оправки с быстросменным держателем, которые идут с набором патронов под каждый размер метчика. В таких оправках обычно предусмотрена осевая компенсация, но так же применяются и предохранительные муфты. Иногда предохранительная муфта предусмотрена в конструкции самого патрона цанги.

Для универсальных фрезерных станков предусмотрены патроны с реверсом, для вывода метчика из отверстия.

5. Для растачивания

Для растачивания на станках применяются два основных вида оправок

А) Модульная или сборная система – представляет собой оправку с фланцем на который крепятся различные расточные головки (с одним резцом, с двумя, для чернового растачивания и т.д.)

Б) Оправки с интегрированными револьверными головками

Револьверная головка в большинстве случаев представляет из себя оправку с закрепленной на торце, на направляющих, блок (или несколько блоков), с поперечным и продольным креплением резца, который можно смещать в перпендикулярном направлении относительно оси вращения оправки для регулирования вылета резца.

Получить консультацию

по инструменту, методам обработки, режимам или подобрать необходимое оборудование можно связавшись с нашими менеджерами или отделом САПР

Также Вы можете подобрать и приобрести режущий инструмент и оснастку к станку, производства Тайваня, Израиля

Отправляя заявку, вы соглашаетесь с политикой конфиденциальности

Шпиндельный узел станка

Деталь конструкции обрабатывающих станков, которая служит для крепления заготовок режущего инструмента, называется шпинельный узел. Он является одной из основных частей кинематической схемы и позволяет производить надёжное крепление детали (инструмента), проводить центровку и устанавливать размер обрабатываемой части заготовки. К ним предъявляются следующие требования:

  • обеспечение заданной скорости вращения;
  • надёжное крепление заготовок или инструмента;
  • требуемую скорость перемещения к задней бабке станка;
  • сохранение высоких динамических качеств;
  • поддержание постоянного температурного режима и неподверженность тепловой деформации;
  • минимальные энергетические потери;
  • постоянство динамических характеристик.

От выполнения этих требований зависит качество обрабатываемой заготовки.

Конструкция

Выбор типа конструкции зависит от назначения обрабатывающего станка, его размеров, мощности привода, кинематической схемы, максимальной скорости с которой он должен вращаться.

Несмотря на обилие квалификационных признаков, узел состоит из следующих деталей:

  • корпус;
  • фиксирующие опоры (количество зависит от выбранной схемы);
  • комплект подшипников;
  • элементы крепления заготовки.

Корпус выполнен в форме вала. Он изготавливается цельным или полым в виде трубы. В нём расположены элементы крепления заготовок, режущего инструмента. Для различных станков его выполняют по индивидуальной конструкции.

Входное отверстие шпиндельных узлов может выполняться в форме цилиндра или конуса (например, конуса Морзе, как у сверлильных станков). Для создания конуса в цилиндрический шпиндель вставляют специальную скалку.

В некоторых узлах используют так называемую оправку. Она располагается в передней части шпинделя, который имеет фланец с направляющими пазами.

В эти пазы вставляются сухари. После размещения хвостовика режущего инструмента производится крепление при помощи болтов.

Если по техническим причинам невозможно выполнить шпиндель в форме трубы (то есть полым) крепление оправок имеющих конический хвостовик производится накидным колпаком. Стенка оправки в этом случае снабжена двойным буртиком. В нём вырезаны лыски. В самом корпусе колпака выточена прямоугольная направляющая. В процессе сборки производится вращение оправки, которое позволяет надёжно закрепить устанавливаемую деталь. Такая конструкция позволяет производить быструю смену инструмента. В отдельных конструкциях предусмотрен специальный механизм крепления. Он предусматривает не только вращательное, но и поступательное движение.

При необходимости концы шпинделей оснащаются коническим хвостовиком. На его конце закрепляется элемент обрабатывающего инструмента. Он крепится в шпинделе с помощью фланца. Применение различных механизмов и способов крепления позволяет производить надёжную установку инструмента, центровку и балансировку.

Все шпиндельные изготавливаются из конструкционной легированной стали. При выборе материала учитывают характеристики станка, требования к шпиндельной головке, условия эксплуатации. Например, износостойкости фланцев, салазок, сухарей, самого корпуса и так далее. Особое внимание уделяется выбору подшипников.

Для изготовления шпиндельных улов, применяются инструментальные легированные стали. Наиболее часто используемыми являются следующие марки: Ст45, Ст40Х, 20Х. Они могут заменяться аналогами, как отечественными, так и зарубежными.

Многие характеристики обрабатывающих агрегатов зависят от применяемой последовательности размещения крепежных опор шпиндельного узла на станине.

В современных станках используют три схемы расположения таких опор.

В первой предусмотрены две опоры. Одна является передней, вторая задней. С помощью передней опоры осуществляется осевая и радиальная установка узла. Она получается достаточно сложной в изготовлении и требует тщательной настройки. Задняя опора выполняется динамически плавающей. Это производит демпфирование возникающей линейной деформации всего узла. Особенно явно она проявляется в результате нагрева.

Такая конструкция шпиндельного узла широко применяется при креплении шпинделя в токарных станках средних размеров, сверлильных и фрезерных аппаратах. Горизонтально-расточной станок имеет данную схему. Для увеличения скорости вращения вместо упорных подшипников применяют радиально-упорные. Они позволяют стабилизировать вращение шпинделя и снижаю нагрев.

Во второй схеме опорные подшипники шпинделя располагают в задней опоре. Это позволяет упростить конструкцию и снизить нагрев всего узла. Однако приводит к росту температурных деформаций. Она применяется в шлифовальных станках.

Третья схема является наиболее универсальной. Такая шпиндельная система обладает более высокой надёжностью за счёт повышенной жесткости. При всех её достоинствах она обладает общим недостатком. Для неё требуется проводить регулировку натяжения подшипников раздельно. В результате снижается скорость перемещения узла. Для сверлильного станка чертёж выполняется по схеме с изменением длины подачи. Для увеличения быстроходности и снижения температурных деформаций современные разработчики уменьшают расстояние между опорами на сколько это возможно. Однако маленькое межопорное расстояние ограничивает номенклатуру обрабатываемых деталей. Эту схему применяют в станках средних размеров, которые предназначены для обработки деталей небольших размеров.

Принцип работы

Шпиндельные узлы осуществляют два вида движения: вращательное и поступательное. Для определённой категории агрегатов предусмотрено одновременное применение обоих видов. Например, сверлильные, токарные, расточные, фрезерные в процессе обработки одновременно производят вращение детали (режущего инструмента) и осуществляют подачу к месту обработки.

Шпиндельные узлы станков выполняют одинаковую функцию. Все шпиндельные узлы металлорежущих станков имеют схожую конструкцию.

Принцип действия этого узла основан на получении вращательного движения от двигателя и обеспечении вращения режущего инструмента или заготовки. Способы передачи крутящего момента, крепления детали или инструмента зависят от принятой кинематической схемы.

Типы шпиндельных узлов

Эти узлы классифицируются следующим образом:

  • типу привода;
  • виду и количеству опор;
  • связи с приводом;
  • типу отверстия;
  • конструктивному исполнению ШУ;
  • способу закрепления заготовки, обрабатывающего инструмента, дополнительной оснастки;
  • марки используемой стали;
  • размерам всего агрегата;
  • количеством одновременно закреплённого инструмента;
  • способам смазки.

Шпиндели и шпиндельные узлы приводятся в движение с помощью ременной или зубчатой передачи. Выбор способа привода, а следовательно конструкция шпиндельного узла, определяется необходимой скоростью вращения, передаваемой мощности, кинематической схемой станка.

Ременные передачи обеспечивают плавный ход, снижают динамические нагрузки, обеспечивают передачу вращения на большие расстояния между двигателем и шпинделем, не требуют постоянной смазки.

Зубчатая передача достаточно компактна, способна обеспечить постоянное передаточное отношение, больший крутящий момент.

Шпиндельный узел токарного станка установлен на две опоры. У агрегатов, предназначенных для изготовления крупногабаритных и массивных деталей, дополнительно устанавливают третью опору. Жесткость конструкций зависит от системы крепления и расстояния между ними. Применение третьей опоры вызвано необходимостью обеспечить дополнительную жёсткость крепления заготовки и демпфирования возможной нестабильности колебаний.

В станках, предназначенных для выполнения большого числа операций, концы шпинделей выполнены в форме цилиндра. В каждом из них размещается скалка, которая свободно перемещается вдоль продольной оси. Она заканчивается отверстием, выполненным на конус.

Фрезерные станки снабжены оправкой, которая крепится специальной тягой. Вращение передается приспособлениями, которые называются сухарями. При установке режущего инструмента их наконечник помещается в специальные пазы.

Все обрабатывающие агрегаты, предназначенные для проведения прутковых работ, оснащаются шпинделем, внутри которого располагается механизм. С его помощью производится надёжная фиксация и подача заготовки к месту обработки.

У шлифовальных станков наконечник шпиндельного узла снабжён хвостовиком. Его выполняют в форме конуса. К нему закреплена планшайба. На неё при помощи фланца крепится шлифовальный круг. Фланец имеет специальный паз, в который монтируются подвижные сухари. С их помощью производят балансировку круга.

В шпиндельных устройствах применяются два типа подшипников:

  • шариковые (устанавливаются в быстроходных малонагруженных агрегатах);
  • роликовые (в средних и тяжелых станках, где необходимо обеспечить повышенную жесткость).

В некоторых типах станков (например, агрегаты шлифовальные, расточные, для присадочного станка) используются гидродинамические подшипники. Они обеспечивают успешную работу узла при небольших изменениях скорости вращения в условиях небольших нагрузок.

Для обеспечения хорошей подвижности и легкости работы применяют способы подачи смазки трёх типов:

  • проточная под давлением (циркуляция обеспечивается специальным насосом);
  • система смазывания созданием так на «масляного» тумана;
  • применение густой консистенции.

Все системы обеспечивают хорошую смазку и сохранение температурного режима.

Первый способ обеспечивает надежность поступления масла в зону смазки. Это происходит благодаря насосу. Под давлением происходит качественный отвод тепла. Второй позволяет более равномерно распределять масляную жидкость, но может обеспечить только незначительный отвод тепла от вращающихся деталей. Кроме этого при нарушении герметизации в сальниках манжетах может произойти выброс воздушно масляной смеси.

По количеству одновременного закреплённого инструмента станки подразделяются на аппараты с одним узлом крепления и несколькими. Например, токарный станок марки ИТ 42 имеет револьверную головку с восемью элементами крепления.

Закрепление концевых и торцевых фрез

Концевые фрезы с цилиндрическим хвостовиком устанавливаются и закрепляются путем применения цанговых патронов. Цанговые патроны изготавливаются с хвостовиками конусностью 7 : 24 и с конусом Морзе. Для обоих типов производятся унифицированные цанги. Конструкция и размеры патронов и цанг приведены в табл.VI.8 .

Втулки переходные для концевых фрез с коническими хвостовиками производятся с наружным конусом Морзе и конусностью 7 : 24 ( табл. VI.9 ).

Таблица VI.8 . Патроны и цанги для концевых фрез с цилиндрическим хвостовиком, мм

Патрон с хвостовиком
конуса 7:24 (МН 25—64)

Патрон с хвостовиком
конуса Морзе (МН 26—64)

Цанги к патронам
(МН 27-64)

Обозначение
конца
шпинделя

6113-0001
6113-0002
6113-0003
6113-0004

6113-0005
6113-0006
6113-0007

6113-0003
6113-0009
6113-0010
6113-0011

Таблица VI.9 . Втулки переходные для концевых фреp с коническими хвостовиками

По ГОСТ 13789—68

6101-0075
6101-0076
6101-0077

По ГОСТ 13792—68 с
отжимной гайкой

По ГОСТ 13790—68

6103-0003
6103-0004
6103-0005

По ГОСТ 13791—63 с торцевым
пазом для отправок

Размер
паза В,
мм

Набор втулок позволяет устанавливать в шпинделях различных металлорежущих станков фрезы с коническими хвостовиками от конуса Морзе 1 до конуса Морзе 6. Втулки с отжимной гайкой обеспечивают облегченный съем втулки с инструментом. Втулки с наружным конусом 7 : 24 имеют фланец с пазами, которыми они соединяются с шипами на торце шпинделя станка при их установке. использование этих втулок требует обязательного закрепления их шомполом, который затягивает втулку в гнездо шпинделя.

Втулки переходные с наружным конусом 7 : 24 и торцевым пазом для установки различных оправок и патронов, хвостовики которых имеют конус Морзе и лыску.

Быстродействующие патроны целесообразно применять в условиях обработки с частой сменой инструментов. Патроны позволяют осуществлять смену фрез без необходимости использовать шомпол, что значительно экономит время

На рис. VI.5 показаны два патрона для закрепления концевых фрез с коническими хвостовиками.

В первом патроне ( рис.VI.5, a ) фреза предварительно закрепляется в переходной втулке 2 винтом 4. Втулка 2 имеет на своем фланце два выступа (второй на рисунке не показан). С закрепленным инструментом втулка вставляется в конусное отверстие корпуса 3 патрона, закрепленного в шпинделе станка шомполом, и затягивяется гайкой 1. Во фланце гайки 1 имеются прорези, соответствующие выступам на фланце втулки 2. Это позволяет, не отвинчивая полностью гайку 1, а только совместив ее прорези 5 с выступами, установить втулку на место, затем поворотом гайки на некоторый угол затянуть втулку с инструментом в конусное гнездо.

Рис. VI.5. Быстродействующие патроны для концевых фрез

Второй патрон (рис . VI.5, б) имеет переходный фланец 8, закрепляемый четырьмя винтами 10 к торцу шпинделя станка. Шипы шпинделя входят в пазы фланца 8 и передают ему крутящий момент. Отверстие фланца имеет два паза, соответствующие двум выступам на втулке 5. Фреза предварительно устанавливается в отверстие втулки 5 и закрепляется винтом 9.

На наружную резьбу фланца 8 навернута ганка 6, в ней имеется винт 7, цилиндрическое окончание которого входит в канавку, образованную на цилиндрической поверхности фланца. Канавка занимает только половину окружности фланца. Винт 7 ограничивает поворот гайки 6 половиной окружности.

Фланец гайки 6 имеет дна паза, такие же, как у фланца 8. Совместив пазы гайки и фланца, втулку 5 с фрезой можно вставить в гнездо шпинделя. Повернув затем гайку 6 по часовой стрелке, затягивают втулку 5, закрепляя ее и инструмент. Подобные патроны нормализованы. По нормали машиностроения МН 5553— 64 выполняется шесть типоразмеров патронов с внутренним конусом Морзе от 1 до 4 и для концов шпинделей 40 и 50.

Эксцентриковые патроны применяются для фрезерования шпоночных гнезд и других мерных и точных пазов немерными концевыми фрезами. Использование патронов позволяет значительно сократить номенклатуру режущих инструментов. На рис. VI.6 показан один из таких патронов.

Хвостовиком 1 патрон закрепляется в шпинделе станка. В корпусе патрона имеется глухое отверстие, ось которого смещена относительно оси вращения патрона на величину е. Ось отверстия под цилиндрический хвостовик фрезы 5 во втулке 2 также смещена на величину е’.

Рис.VI.6. Эксцентриковый патрон

Вследствие двойного эксцентриситета при поворачивании втулки 2 в корпусе патрона ось закрепленной в ней фрезы будет удаляться от оси вращения шпинделя или приближаться к ней. Соответственно этому будет изменяться ширина фрезеруемого паза. Фреза закреплена во втулке двумя винтами 3, а втулка заплечиками гайки 4 прижата к корпусу патрона. Чтобы облегчить установку и смещение оси фрезы, на втулке имеются деления, которые видны через оконце в корпусе патрона (на рисунке не показано); в нем же имеется нулевая риска для отсчета. Фрезу нужно закреплять во втулке 2 таким образом, чтобы ее зуб (на линии а торцевой плоскости) был расположен в общей диаметральной плоскости (д—д) с нулевым делением. Диаметр фрезы при работе с рассмотренным патроном берется меньше номинальной ширины паза на 0,1—0,15 мм.

Закрепление насадных торцевых фрез осуществляется при помощи стандартизированных консольных оправок. Конструкции, основные размеры и обозначения консольных оправок для насадных фрез приведены в табл. VI.10—VI.12 .

Торцевые фрезы больших диаметров — 250—630 мм (так называемые головки) — с цилиндрическими посадочными отверстиями могут закрепляться непосредственно на шпинделе ( рис. VI.7, а ) станка. Они центрируются наружной цилиндрической поверхностью шпинделя, закрепляются четырьмя болтами 1 на его торце и ведутся шипами 3 шпинделя, входящими в пазы корпуса фрезы.

Другим способом крепления является центрирование фрезы переходной оправкой ( рис. VI.7, б ). Здесь фреза 6 посадочным отверстием насаживается на цапфу оправки 8, затянутой в гнездо шпинделя 5 штребелем 4. Фреза крепится к торцу шпинделя четырьмя винтами и ведется шипами 7, находящимися на его торце. Более точное н жесткое крепление достигается посадкой корпуса фрезы 6 ( рис. VI.7, в ) своим посадочным коническим отверстием на наружную конусную поверхность оправки 9. В этом случае оправка затягивается в гнездо шпинделя штребелем, а ведется шипами на торце шпинделя, входящими в пазы на ее фланце. Корпус фрезы, в свою очередь, затягивается на конус оправки торцевым винтом 10.

Рис. VI.7. Способы крепления больших насадных торцевых фрез — головок

Установка и смена режущего инструмента на фрезерных станках занимает значительное время; особенно оно важно в условиях крепления штепселем на вертикальных консольных, бесконсольных станках. Если не представляется возможным модернизировать эти станки, оборудовав их пневмошомпольными устройствами, то следует внимательно отнестись к обеспечению каждого из этих рабочих мест фрезеровщика наборами специальных накидных ключей для завинчивания всех встречающихся в практике работы гаек и винтов, закрепляющих фрезы и оправки к ним.

Пневмошомпольные или механизированные шомпольные зажимы значительно облегчают труд и сокращают время, затрачиваемое на смену инструмента. Механизированный зажим, автоматически закрепляющий инструмент на современных фрезерных станках с ЧПУ показан здесь .

На рис. VI.8 изображен один из пневмошомпольных механизмов зажима. Корпус 10 механизма болтами 17 закреплен на верхнем торце ползуна шпинделя. Стакан 8, внутри которого размещена пружина 1 с шомполом 16, резьбой соединен с верхним конном шпинделя 15 станка и застопорен винтами 9. Второй наружный стакан 4 вмещает в себя стакан 8 и, в свою очередь, входит в центральное отверстие ступицы корпуса поршня 3. С ним он соединен двумя радиально-упорными шарикоподшипниками 5, закрепленными гайкой б, навернутой на резьбу в верхнем конце стакана 4. При вращении шпинделя 15 станка шомпол 16, стаканы 8 и 4 с пружиной также свободно вращаются. Поршень 3 работает в пневмоцилиндре 2, который жестко соединен с корпусом 10 механизма рядом болтов. Крышкой 7 закрыты выступающие наружу части поршня и стакан 4. Механизм работает следующим образом.

В хвостовик оправки 13 ввернут переходник 12, который, в свою очередь, ввернут во втулку 11 так, чтобы паз 14 фланца оправки расположился против шипа на торце шпинделя. Поворотом рукоятки пневмокрана на рисунке не показан) воздух выпускается из цилиндра 2, и освобожденная пружина 1 шомполом 16 затягивает хвостовик оправки 13 с фрезой в гнездо шпинделя. Чтобы освободить фрезу, рукоятка пневмокрана переводится в положение впуска воздуха; при этом поршень 3 под давлением сжатого воздуха сжимает пружину 1 и движением шомпола 16 вниз выводит хвостовик оправки из гнезда шпинделя.

Рис.VI.8. Пневмошомпольный зажим инструмента

Концевые фрезы с резьбовыми хвостовиками, изготавливаемые по ГОСТ 20539—75*, обычно крепятся в цанговых патронах ( см. табл. VI.7 ). Для этого в цанге патрона закрепляется съемный цилиндрический хвостовик ( рис. VI.9 ), на наружном (нижнем) торце которого имеется резьбовое отверстие под резьбу на хвостовике самой фрезы. Отверстие имеет широкую направляющую фаску, такую же, как хвостовик фрезы, и точно соосную оси цилиндрической части. Такое крепление обеспечивает быстросменность инструмента.

Рис. VI.9. Крепление концевых фрез с резьбовым хвостовиком: 1 — быстросменный или цанговый патрон; 2 — цилиндрический переходной хвостовик; 3 — фреза; К — конусы-фаски

Таблица VI.10 . Оправки с продольной шпонкой и хвостовиком конусностью 7:21, конструкция и размеры, мм (ГОСТ 13786 — 68*)

Инструментальный и шпиндельный конус HSK

Система оснасток HSK была разработана специально для высокоскоростной и высокоточной обработки.

Система оснасток HSK является продуктом немецких специалистов. Ее аббревиатура расшифровывается как «Hohl Shaft Kegel», что в буквальном переводе значит «полый конический хвостовик». HSK дизайн был разработан в качестве непатентованного стандарта для поворотных и стационарных станочных систем. Его разработчики считали, что единый стандарт оправок предпочтительнее растущего в то время числа интерфейсов инструментов. Рабочая группа, которая привела к HSK стандартам, состояла из представителей академического мира, Ассоциации немецких Производителей инструментов, и группы международных компаний и конечных пользователей, в том числе Valenite. Их усилия отводились к немецким стандартам DIN 69063 для приемной части шпинделя и DIN 69893 для хвостовика инструмента. Важно отметить, что рабочая группа HSK приняла не конкретный дизайн продукта, а, скорее, набор стандартов, которые определены HSK держателями для различных приложений. Поскольку эти представители отрасли рассматривали альтернативные варианты, у них был очень специфический набор критериев эффективности. Они искали систему оснасток, которая была бы жесткой, легкой и способной к высокой радиальной и осевой точности. Кроме того, система должна была быть пригодной для очень высокой скорости вращения инструмента. В конце концов, группа приняла решение определить не один, а в общей сложности шесть хвостовиков HSK. Эти стили хвостовиков обозначены буквами от А до F. Каждая модель также определена по диаметру фланца хвостовика в миллиметрах. Стили А, В, С и D предназначены для низкоскоростных приложений, E и F — для высоких скоростей. Основными различиями между стилями являются приводные пазы, захватные пазы, расположение отверстий для охлаждающей жидкости, а также площадь поверхности фланца. Каждый стиль был определен для определенных приложений. Надлежащий к использованию вид инструмента HSK и правильный размер обязательно должен быть указан на высокоскоростных шпинделях и станках.

Хвостовики и конус шпинделя

На рисунке 1 показана типичная конструкция хвостовика и ее основные характеристики. Сам хвостовик выполнен в виде полого конуса с соотношением стенок 1 к 10 (угол конусности 2 ° 51 ’78 «). Два приводных паза расположены в конце хвостовика А. Особенность их неравной глубины гарантирует, что оправка может быть ориентирована только в одном направлении. На рисунке 1 показаны приводные пазы, которыми оснащен цилиндрический профиль оправки, это сделано для увеличения поверхности контакта и уменьшения напряжение в момент передачи крутящего момента от шпинделя к хвостовику. Внутренняя поверхность хвостовика имеет фаску, что делает возможным зажим державки изнутри. Как мы увидим позже, внутренний зажим шпинделя предлагает ряд уникальных преимуществ. Стенки хвостовика HSK разработаны так, чтобы быть достаточно тонкими, для возможности слегка сгибаться. Радиальные отверстия доступа расположены в стенке хвостовика на некотором расстоянии от контактной поверхности. Эти отверстия позволяют осуществить доступ ручного зажимного механизма шпинделя для приведения в действие фиксирующего винта (не показан). Внутри хвостовика, имеется паз для резинового кольца сопла системы центрального охлаждения инструмента. Оно предназначено для защиты внутренних компонентов зажима от коррозии. Сопло системы охлаждения инструмента является дополнительной функцией, которая не включена в некоторые типы конструкций зажимного механизма. Когда сопло расположено в держателе, оно имеет приблизительно ± 1⁰ углового смещения. Это допустимая степень свободы, чтобы компенсировать любое смещение компонентов зажимного механизма в процессе зажима. На наружной поверхности фланца хвостовика, существует традиционный V-образный паз определения местоположения и ориентации инструмента в шпинделе и для устройства автоматической смены инструмента. Кроме того, имеется радиальное отверстие для идентификации микросхемы инструмента.

Рисунок 2: Слева — хвостовик HSK50A с диаметром фланца — 50мм, справа — хвостовик HSK50B, который также имеет 50-ти миллиметровый фланец, но имеет хвостовик на один размер меньше.

Основное различие между хвостовиком стилей А и В является размер конуса. В стиле В хвостовик будет иметь конусность один размер меньше, чем хвостовик в стиле А, с фланцем одного и того же размера (рис. 2).

Например, оправка с хвостовиком HSK50B будет иметь те же 50мм в диаметре фланца, которые имеет хвостовик HSK50A, но его конус будет равен конусности HSK40A. Это условие верно и для D и F оправок, они оба будут иметь конуса на один размер меньше, чем A, C, E и такой же диаметр фланца. Чем меньше конус, тем больше остается места на поверхности фланца для сопряжения с торцевой поверхностью шпинделя. Большая площадь фланца позволяет производителям шпинделей найти места на фланце для проектирования захват-фиксирующих пазов для передачи высокого крутящего момента. Большой фланец также дает возможность передачи охлаждающей жидкости через лицевую плоскость торцевой шайбы шпинделя, если это необходимо для перенаправления охлаждающей жидкости для защиты внутреннего зажимного механизма от коррозии. Оправки в стиле C были разработаны исключительно для ручного использования. Это копия оправок с хвостовиком стиля А, с устранением возможности размещения инструмента устройствами автоматической смены. Таким же образом отличается стиль D от стиля B.

Чтобы обрабатывать на очень высоких скоростях и для обработки легких материалов, хвостовики стилей E и F были разработаны полностью симметричными. Их симметрия минимизирует дисбаланс, который может быть значительной проблемой при высоких скоростях. Крутящий момент передается от шпинделя до державки только посредством трения между конусом хвостовика и конусом шпинделя.

Рисунок 3: Основные особенности конуса шпинделя HSK.

На рисунке 3 показаны в разрезе хвостовики А и С-стилей. Их дизайн включает в себя конус с соотношением 1-к-10, внутреннюю цилиндрическую поверхность с выступом и приводные пазы разной высоты. Внутреннее цилиндрическое пространство предназначено для размещения зажимного механизма, который до сих пор еще не стандартизирован. Если используется ручной способ зажима инструмента, то через радиальное отверстие хвостовика может быть использовано для зажима или разжима инструмента. Когда отверстие для доступа используется, защитное кольцо охватывает его для защиты от охлаждающей жидкости и стружки. Зажимное устройство может иметь встроенный подвод охлаждающей жидкости.

Шпиндельные конуса B и D оправок немного отличаются от конусов для оправок А- и C-стилей. Конуса для оправок B — и D-стилей имеют внешнюю поверхность похожую по форме с традиционными конусами шпинделей. В этих конусах подача охлаждающей жидкости может быть направлен через фланец оправки, в обход узла смыкания. Некоторые люди в этой отрасли считают, что оправки стилей А и С являются взаимозаменяемыми со стилями B и D. Это не соответствует действительности. HSK разработчики собирались сделать эти хвостовики взаимозаменяемыми, но они отказались от этой идеи в окончательной версии стандарта. Шпиндельные конуса для оправок E — и F- стилей, как и хвостовики сами по себе, абсолютно симметричные. Поскольку шпиндельные конуса не имеют никаких приводных штифтов, крутящий момент передается только за счет трения.

Как работает HSK

HSK соединение зависит от сочетания осевого усилия зажима и сопротивления перемещению конического хвостовика. Все эти силы генерируется и определяются формой сопряженных поверхностей. Хвостовик и конус шпинделя должны точно сопрягаться коническими поверхностями. Есть несколько систем зажима HSK на рынке, все они используют различные механизмы для усиления зажимного действия равномерно распределенных сегментов цанги.

На рисунке 4 пошагово показано, как типовой зажимной механизм приводится в действие. В первой фазе процесса зажимной механизм находится в разжатом положении. Штанга (2), которая находится в шпинделе (1) и жестко соединена с втулкой (4) цангового зажима. Это позволяет сегментам цанги (3) находиться внутри полости конуса. С сегментами в этом положении, оператор может вставить сопло оправки во втулку зажимного механизма, прижать приводные шпонки (7) и (8) шпинделя с пазами на хвостовике. Во второй фазе процесса зажима, хвостовик — в конусе шпинделя, а зажимной механизм пока не приводится в движение. Поскольку диаметр хвостовика немного больше, чем диаметр конуса шпинделя, оправка не входит полностью в нужное положение. В результате, существует некоторый зазор между фланцем и торцевой поверхностью конуса шпинделя. В третьей фазе, механизм приводится в действие. В определенный момент, штанга натягивается в рукаве вала шпинделя, в противоположную сторону от оправки. В результате сегменты цанги расширяются в радиальном направлении, а их рабочая фаска входит в зацепление с фаской на хвостовике. Это усиливает зажимную силу штанги. Эта сила превращается в усилие, которое равномерно разнесено и применяется к окружности фаски внутрь хвостовика. Через сегменты цанги, прижимная сила заставляет хвостовик слегка деформироваться, потянув за хвостовик дальше в конус шпинделя, пока не будет достигнут контакт между поверхностями фланца хвостовика и торцевой поверхностью конуса шпинделя. Тот факт, что две поверхности находятся в тесном контакте, благодаря упругой деформации хвостовика, обеспечивается точность позиционирования и повторяемость рабочих циклов, как в радиальном, так и в осевом направлении, до 0,0001 «. В конце зажимного цикла, втулка входит в контакт с соплом подачи охлаждающей жидкости оправки (6) и шпонками передачи крутящего момента(7) и (8). Когда хвостовик зажимается в конусе шпинделя, тяговое усилие передается контактом металл-металл между конусом хвостовика и внутренним диаметром зажимного устройства. Дополнительно осевое усилие втяжной штанги блокирует вместе оба этих элемента с большой радиальной и осевой жесткостью. В процессе зажима, часть энергии зажимного устройства будет потрачено на прижатие конического хвостовика вглубь конуса шпинделя. В зависимости от количества свободного пространства, до 20% осевой прижимной силы может потребоваться для «дотяжки» оправки в конус шпинделя. Чем больше зазор между соединяемыми поверхностями, тем больше энергии будет необходимо, чтобы свести их вместе. Возьмем в качестве примера соединение хвостовика HSK40A. Если величина зазора составляет 0,13 мм, зажимное устройство будет оказывать около 5,5 кН для прижатия оправки к торцевой поверхности конуса шпинделя. Если зажимное устройство способно генерировать в общей сложности 23 кН осевого усилия, оно потратит 17,5 кН на торцевое соединение оправки и конуса шпинделя вместе. Но если устройство может генерировать только 11 кН осевого усилия, оно будет иметь возможность передать всего 5,8 кН усилия на соединение, после использования 5,2 кН, чтобы сократить зазор между фланцем и торцом шпинделя. Чтобы избежать потери в усилии зажимного механизма, HSK стандарт диктует жесткие допуски для размеров конуса. Такая точность необходима, потому что каждый 0,025мм отклонения от величины диаметра конуса приведет к 0,025мм погрешности торцевого зазора, при коническом соотношении 1 к 10.

Рисунок 4: На первом этапе действия HSK зажимной (вверху), механизм находится в свободном положении и хвостовик не в конусе шпинделя. На втором этапе (в середине), хвостовик вставлен, но механизм не был приведен в действие. На заключительном этапе (внизу), втяжная штанга шпинделя переместившись вытолкнула сегменты цанги, чтобы взаимодействовать с фаской по внутреннему диаметру хвостовика оправки.

Центробежная сила

До сих пор мы не рассматривали положительный эффект от вращения оправки на силу сцепления механизма. Именно из-за этого эффекта, HSK считается идеальным дизайном не только для 15 000 оборотов в минуту, на которых проходит фрезерная высокоскоростная обработка, но и для 40 000 — до 50000 оборотов в минуту, что будет стандартом для следующих поколении высокопроизводительных станков. Дизайн HSK фактически использует центробежные силы для увеличения прочности соединения. При вращении сегментов цанги, зажимной механизм приобретает центробежную силу в соответствии с формулой:

F = W*R*n2

Где F = центробежная сила в ньютонах, n = число оборотов в секунду, W = вес вращающегося тела в килограммах, а R = перпендикулярное расстояние от оси вращения до центра масс в метрах (или для практического использования, к центру тяжести вращающегося тела). Например (при условии исключения силы трения), предположим, что вес одного сегмента цанги в механизме HSK50A — 0,08 кг, и сегмент расположен на расстоянии 1,3 см от центра тяжести тела. При 40000 оборотах в минуту (666,67 об/сек), центробежная сила на этом участке будет примерно 18,5 кН. Это усилие, возрастает с увеличением скорости вращения, положительно способствуя надежной связи.

Центробежная сила также осуществляет дополнительное прижатие сравнительно тонких стенок конического хвостовика к стенкам конуса шпинделя. Это способствует безопасному соединению, гарантируя сильный контакт между хвостовиком и шпинделем. Изменения, которые вызывает центробежная сила на внутренней стороне зажимного механизма не влияет на осевое положение торца фланца оправки, так как он плотно прижат к торцу шпинделя.

Возможные проблемы использования

Исследования специалистами фирмы Valenite соединения HSK и его проблем, с которыми некоторые пользователи сталкивались при использовании оправок, привели их к выводу, что многие оправки изготовлены из несоответствующих материалов. Спецификация DIN не распространяется на материалы, так что большинство поставщиков инструментов производят компоненты HSK из тех же материалов, которые они используют для обычных конусных оправок. Типичная инструментальная оправка выполнена из легированной стали, которая является либо закаленной либо поверхностно обработанной для создания износостойкого покрытия над твердой, относительно пластичной сердцевиной. Это традиционная технология хорошо работает для обычного инструмента. Однако, это не очень хорошо работает для гибкого хвостовика HSK, который имеет меньшие размеры и работает под более высоким напряжением. На самом деле, использование этих обработанных сплавов является одной из основных причин короткого срока службы инструмента и неустойчивой работы в этих условиях. В результате заключения исследователей Valenite, хвостовики HSK должны изготавливаться из других марок сталей и получать другую термическую обработку, отличную от обычных инструментальных хвостовиков компаний – производителей инструмента. Будучи разработанной в Европе, HSK норматив в некоторой степени отражает практику обработки инструмента на этом континенте. Когда исследователи Valenite сравнили практику изготовления инструментальных оправок в Европе, с практикой в Северной Америке, они обнаружили типичный для производителей Северной Америки повышенный съем металла с заготовок оправок. Это различие имеет огромное влияние на реальную производительность хвостовиков HSK по эту сторону Атлантики. Один из самых основных требований для высоких скоростей обработки — наличие сильной связи между хвостовиком и конусом шпинделя.

Наиболее очевидный способ для достижения достаточной прочности является увеличение усилия зажима. DIN стандарт рекомендует минимальное усилие зажима, которое варьируются от 7 кН фунтов для HSK 40 и 45 кН для HSK100. Valenite рекомендует увеличивать это усилие там, где это возможно. Эти силы должны быть удвоены для HSK размером до № 63, и должны быть увеличены на 30% для более высоких размеров. Повышенное усилие зажима особенно необходимо при низких скоростях обработки, когда центробежная сила не вносит существенного вклада в удерживающей способности механизма зажима шпинделя. Однако существует некоторый риск в увеличении прижимной силы. Более высокое зажимное усилие могут не выдержать компоненты зажимного механизма. Это зависит от шпинделя, дизайн механизма должен выдерживать это напряжение. Увеличение прижимной силы также будет компенсировать колебания в зазоре между стыковочными поверхности хвостовика HSK и конуса шпинделя. DIN стандарт допускает определенную степень отклонения величины этого зазора. Например, зазор между державкой HSK63A и конусом шпинделя может быть в диапазоне от 0,0004 мм до 0,0012 мм. Зажимной механизм должен прикладывать достаточно большое усилие, для того чтобы посадить оправку плотно даже при максимальном допуске зазора.

Точность изготовления

Многие производители инструмента HSK пытались оспорить чрезвычайно жесткие допуски в требовании стандарта HSK. Для достижения такой высокой степенью точности, производители должны использовать специальную технологию контроля качества с очень высоким разрешением. Датчики и приборы должны быть откалиброваны для измерения в 0.0004 мм диапазоне. Кроме того, производителю HSK необходимо использовать специальные датчики высокого разрешения и устройства обработки и обеспечить процедуру окончательного шлифования при стабильной температуре. Чтобы изготовить HSK продукцию согласно требуемых стандартов и еще доставить их пользователям быстро, производители инструмента используют интегрированную конструкцию производственных линий.

Правильное применение инструмента HSK может оптимизировать время обработки для всех станков, в то же время он обеспечивает радиальную и осевую точность. Он легче, более короткий, более жесткий, и точнее, чем любой инструмент конкурентоспособной инструментальной технологии, и это единственная технология в настоящее время, которая предназначена для выполнения обработки высокоскоростными шпинделями, такими, как шпиндели Franz Kessler.

Читайте также:  Электронная система управления коробкой передач
Ссылка на основную публикацию