Упругие гидропневматические элементы

Упругие элементы

В качестве упругих устройств в подвесках современных автомобилей используют металлические и неметаллические элементы. Наибольшее распространение получили металлические устройства: пружины, листовые рессоры и торсионы.

Пружина подвески автомобиля с переменной жесткостью

Наиболее широко (особенно в подвесках легковых автомобилей) применяются витые пружины, изготавливаемые из стального упругого стержня круглого сечения.
При сжатии пружины по вертикальной оси, ее витки сближаются и закручиваются. Если пружина имеет цилиндрическую форму, то при ее деформации расстояние между витками сохраняется постоянным и пружина имеет линейную характеристику. Это значит, что деформация цилиндрической пружины всегда прямо пропорциональна приложенному усилию, а пружина имеет постоянную жесткость. Если изготовить витую пружину из прутка переменного сечения или придать пружине определенную форму (в виде бочонка или кокона), то такой упругий элемент будет иметь переменную жесткость. При сжатии такой пружины вначале будут сближаться менее жесткие витки, а после их соприкосновения в работу вступят более жесткие. Пружины переменной жесткости широко применяются в подвесках современных легковых автомобилей.
К достоинствам пружин, применяемых в качестве упругих элементов подвесок, следует отнести их малую массу и возможность обеспечения высокой плавности хода автомобиля. В то же время пружина не может передавать усилия в поперечной плоскости и ее применение требует наличия в подвеске сложного направляющего устройства.

Задняя рессорная подвеска:
1 — проушина рессоры;
2 — резиновая втулка;
3 — кронштейн;
4 — втулка;
5 — болт;
6 — шайбы;
7 — палец;
8 — резиновые втулки;
9 — пружинная шайба;
10 — гайка;
11 — кронштейн;
12 — втулка резиновая;
13 — втулка;
14 — пластина серьги;
15 — болт;
16 — штанга стабилизатора;
17 — коренной лист;
18 — листы рессоры;
19 — резиновый буфер хода сжатия;
20 — стремянки;
21 — накладка;
22 — балка заднего моста;
23 — амортизатор;
24 — хомут;
25 — лонжерон рамы;
26 — кронштейн стабилизатора;
27 — серьга стабилизатора

Листовая рессора служила упругим элементом подвески еще на гужевых экипажах и первых автомобилях, но она продолжает применяться и в наши дни, правда в основном на грузовых автомобилях. Типичная листовая рессора состоит из набора скрепленных между собой листов различной длины, изготовленных из пружинной стали. Листовая рессора обычно имеет форму полуэллипса.

Способы крепления рессор:
а — с витыми ушками;
б — на резиновых подушках;
в — с накладным ушком и скользящей опорой

Листы, из которых состоит рессора, имеют различную длину и кривизну. Чем меньше длина листа, тем больше должна быть его кривизна, что необходимо для более плотного взаимного прилегания листов в собранной рессоре. При такой конструкции уменьшается нагрузка на самый длинный (коренной) лист рессоры. Листы рессоры скрепляют между собой центровым болтом и хомутами. С помощью коренного листа рессора прикрепляется шарнирно обоими концами к кузову или раме и может передавать усилия от колес автомобиля на раму или кузов. Форма концов коренного листа определяется способом крепления его к раме (кузову) и необходимостью обеспечения компенсации изменения длины листа. Один из концов рессоры должен иметь возможность поворачиваться, а другой поворачиваться и перемещаться.
При деформации рессоры ее листы изгибаются и изменяют свою длину. При этом происходит трение листов друг о друга, и поэтому они требуют смазки, а между листами рессор легковых автомобилей устанавливают специальные антифрикционные прокладки. В то же время наличие трения в рессоре позволяет гасить колебания кузова и в некоторых случаях дает возможность обойтись без применения в подвеске амортизаторов. Рессорная подвеска имеет простую конструкцию, но большую массу, что и определяет наибольшее ее распространение в подвесках грузовых автомобилей и некоторых легковых автомобилях повышенной проходимости. Для уменьшения массы рессорных подвесок и улучшения плавности хода иногда применяются малолистовые и однолистовые рессоры с листом переменного по длине сечения. Довольно редко в подвесках применяются рессоры, изготовленные из армированной пластмассы.

Торсионная подвеска. В задней подвеске автомобиля Peugeot 206 используются два торсиона, соединенные с продольными рычагами. В направляющем устройстве подвески применяются трубчатые рычаги, установленные под углом к продольной оси автомобиля

Торсион — металлический упругий элемент, работающий на скручивание. Обычно торсион представляет собой сплошной металлический стержень круглого сечения с утолщениями на концах, на которых нарезаны шлицы. Встречаются подвески, в которых торсионы изготовлены из набора пластин или стержней (автомобили ЗАЗ). Одним концом торсион крепится к кузову (раме), а другим к направляющему устройству. При перемещениях колес торсионы закручиваются, обеспечивая упругую связь между колесом и кузовом. В зависимости от конструкции подвески торсионы могут располагаться как вдоль продольной оси автомобиля (обычно под полом), так и поперек. Торсионные подвески получаются компактными и легкими и дают возможность регулировки подвески путем предварительного закручивания торсионов.
Неметалические упругие элементы подвесок делятся на резиновые, пневматические и гидропневматические.
Резиновые упругие элементы присутствуют практически во всех конструкциях подвесок, но не в качестве основных, а как дополнительные, используемые для ограничения хода колес вверх и вниз. Применение дополнительных резиновых ограничителей (буферов, отбойников) ограничивает деформацию основных упругих элементов подвески, увеличивая ее жесткость при больших перемещениях и предотвращая удары металла по металлу. В последнее время резиновые элементы все чаще заменяются устройствами из синтетических материалов (полиуретан).

Упругие элементы пневматических подвесок:
а — рукавного типа;
б— двойные баллоны

В пневматических упругих элементах используются упругие свойства сжатого воздуха. Упругий элемент представляет собой баллон, изготовленный из армированной резины, в который подается под давлением воздух от специального компрессора. Форма пневмобаллонов может быть различной. Получили распространение баллоны рукавного типа (а) и двойные (двухсекционные) баллоны (б).
К преимуществам пневматических упругих элементов подвесок следует отнести высокую плавность хода автомобиля, небольшую массу и возможность поддержания постоянным уровня пола кузова, независимо от загрузки автомобиля. Подвески с пневматическими упругими элементами применяют на автобусах, грузовых и легковых автомобилях. Постоянство уровня пола грузовой платформы обеспечивает удобство погрузки и разгрузки грузового автомобиля, а для легковых автомобилей и автобусов — удобство при посадке и высадке пассажиров. Для получения сжатого воздуха на автобусах и грузовых автомобилях с пневматической тормозной системой используются штатные компрессоры, приводимые в действие от двигателя, а на легковых автомобилях устанавливают специальные компрессоры, как правило, с электроприводом (Range Rover, Mercedes, Audi).

Пневмоподвеска. На новых автомобилях Mercedes Е-класса вместо пружин стали применяться пневматические упругие элементы

Использование пневматических упругих элементов требует применения в подвеске сложного направляющего элемента и амортизаторов. Подвески с пневматическими упругими элементами некоторых современных легковых автомобилей имеют сложное электронное управление, которое обеспечивает не только постоянство уровня кузова, но и автоматическое изменение жесткости отдельных пневмобаллонов на поворотах и при торможении, для уменьшения крена кузова и клевков, что в целом повышает комфортабельность и безопасность движения.

Гидропневматический упругий элемент:
1 — сжатый газ;
2 — корпус;
3 — жидкость;
4 — к насосу;
5 — к амортизаторной стойке

Гидропневматический упругий элемент представляет собой специальную камеру, разделенную на две полости эластичной мембраной или поршнем.
Одна из полостей камеры заполнена сжатым газом (обычно азотом), а другая жидкостью (специальным маслом). Упругие свойства обеспечиваются сжатым газом, поскольку жидкость практически не сжимается. Перемещение колеса вызывает перемещение поршня, находящегося в цилиндре, заполненном жидкостью. При ходе колеса вверх поршень вытесняет из цилиндра жидкость, которая поступает в камеру и воздействует на разделительную мембрану, которая перемещается и сжимает газ. Для поддержания необходимого давления в системе используется гидравлический насос и гидроаккумулятор. Изменяя давление жидкости, поступающей под мембрану упругого элемента, можно изменять давление газа и жесткость подвески. При колебаниях кузова жидкость проходит через систему клапанов и испытывает сопротивление. Гидравлическое трение обеспечивает гасящие свойства подвески. Гидропневматические подвески обеспечивают высокую плавность хода, возможность регулировки положения кузова и эффективное гашение колебаний. К основным недостаткам такой подвески относится ее сложность и высокая стоимость.

Prosta4ok › Блог › Гидропневматическая подвеска.

Гидропневматическая подвеска – вид подвески, в котором используются гидропневматические упругие элементы. Впервые гидропневматическая подвеска была применена на автомобилях Citroen в 1954 году. Современной конструкцией гидропневматической подвески является подвеска Hydractive, в которой реализованы ее лучшие качества. В настоящее время устанавливается гидропневматическая подвеска Hydractive третьего поколения. Гидропневматическая подвеска применялась по лицензии на автомобилях Mercedes, Rolls-Royce и др. В конструкции современной гидропневматической подвески предусмотрено автоматическое изменение характеристик, т.е. она является активной подвеской.

Основными преимуществами гидропневматической подвески являются высокая плавность хода, возможность регулировки положения кузова относительно дорожного покрытия, эффективное гашение колебаний, адаптация к стилю вождения конкретного человека. Сложность и высокая стоимость являются сдерживающими факторами широкого применения данного типа подвески.

Гидропневматическая подвеска используется совместно с другими типами подвесок. Так, на автомобиле Citroen C5 гидропневматическая подвеска на передней оси интегрирована с подвеской МакФерсон, а на задней оси с многорычажной подвеской.

Гидропневматическая подвеска Hydractive

История гидравлической подвески Hydractive насчитывает три поколения:

Hydractive 1 — с 1989 года;
Hydractive 2 — с 1993 года;
Hydractive 3 — с 2000 года.
Развитие гидропневматической подвески Hydractive осуществляется в двух направлениях — повышение надежности и расширение функциональных возможностей. Устройство гидропневматической подвески Hydractive рассмотрено на примере подвески третьего поколения. Подвеска Hydractive 3 включает следующие конструктивные элементы:

гидроэлектронный блок;
резервуар рабочей жидкости;
стойки передней подвески;
задние гидропневматические цилиндры;
регуляторы жесткости;
гидропроводы;
система управления.

Схема гидропневматической подвески Hydractive 3
1.гидроэлектронный блок;
2.передняя стойка;
3.передний регулятор жесткости;
4.передний датчик положения кузова;
5.задний гидропневматический цилиндр;
6.задний регулятор жесткости;
7.задний датчик положения кузова;
8.встроенный интерфейс;
9.датчик рулевого колеса;
10.резервуар рабочей жидкости;
11.педаль газа и педаль тормоза
Гидроэлектронный блок, резервуар рабочей жидкости, передние стойки, задние цилиндры, регуляторы жесткости образуют гидравлическую систему подвески. В гидравлическую систему также включен контур гидравлического усилителя рулевого управления. В ранних версиях подвески гидравлическая система объединяла контур тормозной системы автомобиля. В подвеске Hydractive 3 тормозная система независима.

Гидроэлектронный блок (гидротроник) обеспечивает необходимое количество и давление рабочей жидкости в гидравлической системе подвески. Он объединяет электродвигатель, аксиально-поршневой насос, электронный блок управления, электромагнитные клапаны регулирования высоты кузова, запорный клапан (предотвращает опускание кузова в нерабочем состоянии), предохранительный клапан. Электронный блок управления и электромагнитные клапаны являются элементами системы управления подвески.

Читайте также:  Устройство Audi A7

Резервуар рабочей жидкости располагается непосредственно над гидроэлектронным блоком. В подвеске Hydractive 3 используется рабочая жидкость LDS (оранжевый цвет), пришедшая на смену жидкости LHM (зеленый цвет).

Стойка передней подвески объединяет гидроцилиндр и гидропневматический упругий элемент, между которыми расположен амортизаторный клапан, обеспечивающий гашений колебаний кузова.

Гидропневматический упругий элемент представляет собой металлическую сферу, которая внутри разделена эластичной многослойной мембраной. Над мембраной находится сжатый газ – азот, под мембраной – специальная жидкость. Жидкость передает давление в системе, а газ выступает упругим элементом.

На подвеске Hydractive 3+ устанавливается по одному упругому элементу на каждое колесо и по одной дополнительной сфере на каждую ось. Применение дополнительных упругих элементов значительно расширяет параметры регулирования жесткости подвески. Современные сферы имеют серый цвет и сохраняют работоспособность в пределе 200000 км пробега.

Гидравлические цилиндры предназначены для нагнетания жидкости в упругие элементы и регулирования высоты положения кузова относительно дорожного покрытия. Гидроцилиндр снабжен поршнем, шток которого соединен с соответствующим рычагом подвески. Задние гидропневматические цилиндры по конструкции аналогичны передним стойкам, но расположены под углом к горизонтальной плоскости.

Регулятор жесткости служит для изменения жесткости подвески. Он включает электромагнитный клапан регулирования жесткости, золотник, два дополнительных амортизаторных клапана. На регуляторе жесткости закреплена дополнительная сфера. Регулятор жесткости устанавливается на передней и задней подвеске. В мягком режиме подвески регулятор жесткости объединяет все гидропневматические упругие элементы между собой, при котором достигается максимальный объем газа. Электромагнитный клапан при этом обесточен. При подаче напряжения на электромагнитный клапан включается жесткий режим подвески, при котором стойки, задние цилиндры и дополнительные сферы изолируются друг от друга.

Система управления гидропневматической подвески включает входные устройства, электронный блок управления и исполнительные устройства.

К входным устройствам относятся входные датчики и переключатель режимов работы. Входные датчики преобразуют соответствующие характеристики в электрические сигналы. В гидропневматической подвеске Hydractive 3 используются датчики положения кузова по высоте и угловой датчик рулевого колеса. Датчик положения кузова по высоте представляет информацию о средней высоте кузова. На автомобили Citroen устанавливается 2 или 4 таких датчика. Датчик угла поворота рулевого колеса измеряет направление и скорость вращения рулевого колеса. Переключатель режимов работы обеспечивает ручное (принудительное) регулирование высоты кузова и жесткости гидропневматической подвески.

Электронный блок управления принимает сигналы от входных устройств. обрабатывает их в соответствии с заложенной программой и формирует управляющие воздействия на исполнительные устройства.
В своей работе электронный блок управления взаимодействует с системой управления двигателем, антиблокировочной системой тормозов.

К исполнительным устройствам системы управления подвески Hydractive 3 относятся:

электродвигатель насоса;
электромагнитные клапаны регулирования высоты;
электромагнитные клапаны регулирования жесткости;
электрический корректор фар.
Электродвигатель под управлением изменяет скорость вращения, соответственно изменяется производительность насоса и давление в системе. В подвеске Hydractive 3 используется 4 электромагнитных клапана регулирования высоты — два на переднюю подвеску (впускной и выпускной) и два на заднюю подвеску (впускной и выпускной). Электромагнитные клапаны регулирования жесткости расположены в регуляторах жесткости.

Гидропневматическая подвеска Hydractive 3 обеспечивает:

автоматическое регулирование дорожного просвета;
автоматическое регулирование жесткости;
принудительное изменение дорожного просвета и жесткости.
Автоматическое регулирование дорожного просвета осуществляется в зависимости от скорости движения автомобиля, качества дорожного покрытия и стиля вождения конкретного человека. При движении по автомагистрали со скоростью более 110 км/ч высота кузова автоматически снижается на 15 мм. При плохих дорожных условиях и скорости ниже 60 км/ч клиренс автоматически увеличивается на 20 мм. В автомобиле автоматически поддерживается определенная высота кузова независимо от нагрузки (загрузки). Высота подъема кузова определяется объемом специальной жидкости, циркулируемой в контуре системы. Объем жидкости дозируется регулятором положения кузова. Работа гидропневматической подвески обеспечивает сохранение заданного уровня пола кузова при перемещении колес по неровному дорожному покрытию.

Автоматическое регулирование жесткости подвески реализовано в расширенной версии подвески Hydractive 3+. Изменение режимов жесткости производится в зависимости от характера движения (ускорение, торможение, движение по прямой, в поворотах). Для принятия решения используются следующие параметры: скорость автомобиля, продольное и поперечное ускорение, изменение высоты. угол и скорость поворота рулевого колеса, изменение крутящего момента, изменение давления в тормозной системе. В зависимости от условий система автоматически воздействует на электромагнитный клапан регулятора жесткости и приводит подвеску в жесткий или мягкий режим. Изменение жесткости осуществляется как для отдельного упругого элемента (при повороте автомобиля), так и всей системы (при прямолинейном движении).

В конструкции гидропневматической подвески предусмотрено принудительное (ручное) изменение дорожного просвета, что в конкретных условиях обеспечивает преодоление препятствий, а также удобство погрузки (выгрузки) и уборки автомобиля. В расширенной версии подвески Hydractive 3+ вручную можно изменять и жесткость подвески.

Устройство и принцип работы гидропневматической подвески Hydractive

В конструкции гидропневматической подвески отсутствуют такие привычные упругие элементы, как пружины или торсионы. Их функцию выполняют гидропневматические сферы, заполненные газом и жидкостью, которые, в свою очередь, разделены между собой высокопрочной эластичной мембраной. Отработка неровностей дорожной поверхности происходит за счет такого свойства объема газа, как его сжатие под воздействием жидкости. Гидропневматическая подвеска является адаптивной и способна изменять степень жесткости исходя из условий движения. Среди мировых производителей наибольших успехов в применении подобной схемы подвески на своих автомобилях достигла французская компания Citroen. Развитие ее фирменной системы Hydractive насчитывает несколько поколений, а история исчисляется с середины прошлого века.

История появления

Впервые подобный тип подвески был применен инженерами Citroen на задней оси автомобиля Traction Avantе в 1954 году. Позднее данная схема стала применяться в составе подвески всех колес на легендарных автомобилях Citroen DS. Фирменная адаптивная гидропневматическая подвеска Citroen Hydractive, созданная на базе предыдущих разработок, впервые была представлена в 1988 году на концепт-каре Activa.

Поколения подвески

Hydractive

I поколение

С 1990 года подвеска Hydractive 1 серийно устанавливалась на ряд автомобилей Citroen, включая модели Xantia и XM. Особенностью первых двух поколений было совмещение гидравлических магистралей тормозной системы, усилителя рулевого управления и подвески в один общий контур.

Схема передней подвески Hydractive на автомобиле Citroen XM

Было предусмотрено два режима:

  • Sport – режим жесткой подвески для динамичной езды.
  • Auto – режим автоматического изменения жесткости подвески на основе показаний датчиков, учитывающих текущие параметры движения (датчика положения педали газа, угла поворота рулевого колеса, давления в тормозной системе и других).

II поколение

Модернизация затронула режим Auto, который был изменен на Comfort. Движение в комфортном режиме предполагало автоматическое кратковременное увеличение жесткости подвески при прохождении поворотов и ускорении в целях сохранения лучшей управляемости и динамики автомобиля.

Citroen XM 1995 года выпуска

Вторым нововведением было добавление в гидравлический контур дополнительного резервуара с запорным клапаном, что позволило длительное время сохранять высокое давление в системе. Заданная высота кузова поддерживалась в течение нескольких недель без запуска двигателя. Начиная с 1994-го года подвеска Hydractive 2 устанавливалась на модели Xantia, с 1995-го – на XM.

III поколение

Система Hydractive 3 устанавливалась с 2001-го года на автомобили Citroen C5 и обладала следующими отличительными особенностями:

  • Упрощена гидравлическая схема – тормозная система была выведена за пределы общего контура.
  • Отсутствие функции ручного выбора режима работы подвески.
  • Автоматическое уменьшение клиренса автомобиля на 15 мм от стандартного значения на скорости выше 110км/ч и увеличение дорожного просвета на 13 мм на скорости ниже 70 км/ч.

Определение оптимальной высоты положения кузова при движении производится на основании показаний датчиков скорости и датчиков высоты положения передней и задней частей автомобиля.

Сitroen С5 Сrosstourer 2014 года выпуска

Улучшенная версия Hydractive 3 с индексом «+», применявшаяся с 2005 года на дорогих комплектациях Citroen C5 и в качестве стандартного оснащения модели С6, имела следующие отличия от базовой:

  • Водителю доступны два режима – Comfort (мягкая подвеска) и Dynamic (спортивный режим).
  • Более совершенный алгоритм определения оптимального дорожного просвета, использующий в своей основе такие показатели, как: текущая скорость автомобиля, высота передней и задней части кузова, скорость вращения и угол поворота рулевого колеса, продольное и поперечное ускорение, скорость перемещения подвески, положение дроссельной заслонки.

Основные элементы подвески Hydractive

Современная система Hydractive состоит из следующих основных элементов:

  • Гидроэлектронный блок управления — гидротроник (1), регулирующий давление и количество жидкости в системе.
  • Передние (2) и задние (5) гидропневматические элементы, выполняющие функцию демпфирующих и упругих элементов подвески.
  • Передняя (3) и задняя (6) дополнительные гидропневматические сферы, регулирующие жесткость подвески.
  • Передний (4) и задний (7) датчики высоты положения кузова.
  • Встроенный интерфейс (8).
  • Датчик положения рулевого колеса (9).
  • Расширительный бачок с жидкостью (10).
  • Педаль акселератора (11).
  • Педаль тормоза (12).

Принцип работы подвески Hydractive

Принцип работы подвески Hydractive основан на сжатии газа (азота), который закачан под давлением в объем верхней полости гидропневматической сферы (над мембраной). Нижняя часть сферы под мембранной заполнена специальной жидкостью (маслом). Гидропневматическая сфера объединена с амортизатором и, таким образом, представляет собой единую конструкцию (стойку), выполняющую роль как упругого, так и демпфирующего элемента. Шток с поршнем амортизатора соединен с соответствующим рычагом подвески. При сжатии подвески, поршень движется вверх, оказывая воздействие на жидкость. Поскольку жидкость несжимаема, усилие передается далее на мембрану и на объем газа в сфере.

Газ «пружинит» и возвращает свой первоначальный объем, чем и обусловлено его применение в качестве упругого элемента. Гашение колебаний происходит за счет дросселирования потока жидкости, проходящей через клапан при перемещении поршня как в обычном амортизаторе. Изменение сечения электромагнитного клапана делает ход поршня «мягче» или «жестче», тем самым изменяя характеристики подвески.

На последнем поколении Hydractive 3 используется жидкость LDS (оранжевого цвета) на базе синтетических компонентов, в отличии от применявшегося в предшествующих генерациях минерального масла LHM (зеленого цвета). Новая жидкость обладает лучшими рабочими качествами и более долговечна. Замена необходима лишь раз в 5 лет или через 200 000 км.

Преимущества гидропневматической подвески

  • Превосходная плавность хода.
  • Отличная управляемость, в том числе на неровной дороге.
  • Возможность изменения дорожного просвета.
  • Автоматическая адаптация характеристик жесткости подвески под текущие условия движения.
  • Возможность выбора желаемого режима работы подвески исходя из стиля вождения.
  • Длительный срок службы гидропневматических элементов (до 25 0000 км пробега) и увеличенные интервалы обслуживания.

Недостатки гидропневматической подвески

  • Сложность конструкции.
  • Высокая стоимость производства.
  • Высокая стоимость обслуживания и ремонта.
Читайте также:  Устройство автомобиля для детей

В связи со своей высокой стоимостью и сложностью изготовления гидропневматическая подвеска редко встречается на большинстве серийных автомобилей. В основном она применяется на автомобилях премиум-сегмента такими производителями, как, например, Bentley, Rolls-Royce и Mercedes-Benz. Одним из автомобилей, на котором уже много лет успешно применяется подобная схема подвески, является популярный во всем мире внедорожник класса «люкс» Lexus LX570. На последнем поколении Citroen C5 устанавливается обычная гидравлическая подвеска. Гидропневматические элементы были упразднены в целях снижения стоимости и повышения уровня доступности автомобиля. Помимо автомобилестроения гидропневматическая подвеска применяется также в шасси специальных машин и военной техники.

Металлические, резиновые и пневматические элементы подвески

Избегая технических терминов, можно сказать, что подвеска необходима для того, чтобы снизить влияние неровностей дорог на кузов автомобиля. Для этого в конструкции подвески предусмотрены упругие элементы. К ним относятся пружины, рессоры, и резиновые элементы (отбойники, буфера, сайлент-блоки). Так же существуют пневматические и гидропневматические упругие элементы.

Металлические упругие элементы

Пружины

Пружины, как упругий элемент подвески, на сегодняшний день используются в подавляющем большинстве легковых автомобилей. Выполненные из металлического прутка круглого сечения, они имеют постоянную характеристику жесткости и прекрасно справляются с возложенной на них задачей. Витки равномерно сближаются по мере того, как возрастает нагрузка, и возвращаются в исходное положение при ее снятии.

Если есть необходимость в переменной жесткости, тогда пружины выполняются из прутка различного диаметра (на определенных участках), или в форме бочонка (некоторые витки уже). В этом случае, когда пружина будет получать нагрузку, первыми будут сближаться витки меньшего диаметра (толщины).

Плюсом пружины, как упругого элемента, является простота изготовления, а значит конечная стоимость продукта, и ее малый вес. Но поскольку ей не под силу передавать усилия в поперечной плоскости, она требует от подвески автомобиля наличия сложных направляющих устройств. Что в свою очередь сказывается как на цене, так и на весе всего узла.

Рессоры

Ещё одним упругим элементом подвески автомобиля являются листовые рессоры. По причине большого веса, в сравнении с теми же пружинами, рессоры в основном используются в подвеске грузовых автомобилей. Рессора состоит из металлических листов (в очень редких случаях из армированной пластмассы), различной длины и формы, соединенных между собой болтом по центру, и хомутами ближе к краям. Будучи равными по ширине, каждая пластина, в зависимости от длины, имеет различную степень выгнутости. Это обеспечивает рессоре необходимые характеристики. Самая длинная (коренная) пластина крепится к кузову или раме автомобиля.

Существует несколько основных способов крепления рессоры к кузову:

  • с помощью витых ушек;
  • скользящая опора и накладные ушки;
  • резиновые подушки.

Каждый из способов крепления имеет свои особенности и характеристики. Общее требованию к любому из перечисленных методов крепления — концы пластин должны иметь возможность перемещаться и поворачиваться. В процессе работы рессорной подвески, происходит трение листов друг о друга. Это требует применения дополнительной смазки, или наличия антифрикционных прокладок.

Резиновые упругие элементы подвески автомобиля

Данные элементы играют вспомогательную роль в работе подвески, тем не менее, их так же можно отнести к упругим элементам. Они в первую очередь помогают избегать ударов металлических частей подвески друг о друга, тем самым максимально снижая уровень шума. Так же увеличивают жесткость основных элементов и ограничивают степень их деформации.

Резиновые элементы отлично справляются с работой, как на сжатие, так и на отбой. Так, к примеру, полиуретановые отбойники, установленные в стойке амортизатора, прекрасно работают на отбой.
Различная форма, как и в случае с пружиной, задает рабочие характеристики резинового элемента. Форма конуса позволяет обеспечить плавные характеристики, сначала сжимается тонкая, верхняя часть, чем ближе к толстой части, тем более упругой становится резина.

Сегодня часто встречаются отбойники ступенчатой формы, имеющие чередующиеся тонкие и толстые части. Это позволяет в значительной степени увеличить его рабочий ход.

Пневматика и гидропневматика

Пневмоподвеска используется как в легковом, так и в грузовом и пассажирском транспорте. Пневматический упругий элемент, позволяет изменять жесткость подвески в зависимости от дорожной ситуации, загруженности автомобиля. В современных автомобилях, пневматической подвеской управляет электроника, которая способна самостоятельно следить за ее работой, и изменять ее жесткой в зависимости от ситуации.

Пневматические элементы

Пневматические элементы (пневмобаллоны), изменяют свою жестокость за счет давления воздуха, создаваемого внутри компрессором. Баллоны выполнены из маслостойкой и воздухонепроницаемой резины, содержат корд и металлические нити, что придает им большую жестокость и надежность. Отсюда и название — резинокордные упругие элементы. Толщина стенок такого баллона обычно составляет от 3 до 5 мм.

Гидропневматические элементы

Данный упругий элемент обеспечивает наибольший комфорт для водителя и пассажиров автомобиля, так как отлично справляется с функцией гашения колебаний подвески. Гидропневматический упругий элемент — это камера, имеющая две полости. Одна из них наполнена газом, а другая жидкостью, которые, как известно, имеют различную степень сжатия. Через сложную систему мембран и клапанов, жидкость и газ взаимодействует в различной степени (в зависимости от ситуации), что и обеспечивает необходимый комфорт и упругость подвески автомобиля.

Повсеместное распространение данной подвески ограничено, пожалуй, лишь ее высокой стоимостью.

Прогресс не стоит на месте, а инженеры с каждым годом все ближе и ближе к тому, чтобы создать идеальную по всем характеристикам подвеску, которая будет отвечать всем необходимым требованиям. Возможно не за горами тот день, когда нахождение в салоне автомобиля (при езде по самому жуткому бездорожью), по комфорту можно будет сравнить с сидением на мягком диване.
” alt=””>

Гидропневматическая подвеска – что это такое? Описание и основные особенности

Подвеска автомобиля является одним из тех узлов, который появился раньше других. То есть те самые узлы – кузов, тормоза, мотор и сама подвеска.. Конечно, сейчас от той самой первой конструкции почти не остался и следа, по крайней мере, в мире легковых авто, разве что грузовики и суперпрофессиональные джипы оснащаются подобными, но доработанными механизмами, так как никто для тяжёлых условий ничего не придумал. Перед легковушками же стоят другие задачи – обеспечить водителю и пассажирам одновременно комфортную, безопасную, а порой и спортивную езду.

Гидропневматическая подвеска относится к разновидностям подвески, в котором применяется система, основанная на гидропневматических упругих элементах. Гидропневматическую подвеску изобрела фирма Citroen, и впервые была применена на ситроеновских моделях в 1954 году. Современным развитием гидропневматической подвески является французская подвеска семейства Hydractive, уже третьего поколения, в которой доработаны и реализованы все ее лучшие качества. Также, «Гидропневмака» по лицензии применялась и другими автопроизводителями, такими, как Bentley, Rolls-Royce, Mercedes и др. В современной гидропневматической подвеске конструкция имеет автоматическое изменение работы и характеристик, то есть она представляет собой активную подвеску.

У данного типа подвесок куча достоинств. Но всё же, основными преимуществами «гидропневматики» являются, во-первых, их превосходная, «лимузинная» плавность хода, её сочетание с отличной управляемостью – вспомним любой Ситроен с подвеской Гидрактив, которая даёт возможность регулировать клиренс автомобиля – расстояния кузова между дорогой и его днищем, и его положения максимально вертикально или горизонтально по отношению к дорожному покрытию, эффективнейшее гашение колебаний, быстрая адаптация под стиль вождения каждого водителя. Есть, пожалуй, и минусы, их две и они большие – это ультрасложность механизма и его высокая стоимость. Они в итоге и становятся сдерживающими факторами большого массового применения этого типа подвески.

Также, ситроеновцы научились «скрещивать» их гидропневматическое детище с другими типами подвесок. Например, на ситроеновской модели C5 на передней оси гидропневматическую подвеску они интегрировали с обычными стойками МакФерсон, а на задней она идёт в тандеме с «многорычажкой».

О детище Citroen – гидропневматической подвеске семейства Hydractive

Подвеска семейства Hydractive самая свежая из всех ситроеновских гидравлических, и уже насчитывает третье поколение:

*Итак, первое семейство – Hydractive 1 появился и выпускается с 1989 года;

* Второе – Hydractive 2 – начиная с 1993 года;

* И третье – Hydractive 3 – производится с 2000 года.

Сейчас эволюция гидропневматики Hydractive происходит по двум направлениям – 1) повышение надежности и 2) расширение функциональных способностей и возможностей. В этой статье механизм гидропневматической подвески рассматривается на примере подвески последнего, третьего по счёту поколения Hydractive. Гидропневматика Hydractive III включает в себя стойки для передней оси, гидропневматические цилиндры для задней, регуляторы жесткости, гидроэлектронный блок и систему управления.

Гидравлические составляющие системы подвески – образовано из гидроэлектронного блока, резервуара рабочей жидкости, передних стоек, задних цилиндров, регуляторов жесткости. Также, в гидравлическую систему интегрирован контур гидроусилителя рулевого механизма. В ранних сериях подвески в гидравлической системе был «инсталлирован» и контур тормозной системы машин. Но начиная с 2000 года, третье поколение подвески Гидрактива уже имеет независимую от тормозной системы работу.

Рассмотрим роль каждого элемента. Итак, в круг обязанностей гидроэлектронного блока (то есть гидротроника) входит снабжение необходимого количества рабочей жидкости, и регулировать её давление внутри всей гидравлической системе подвески. В него входят электромотор, насос аксиально-поршневого типа, клапаны контроля высоты кузова автомобиля, ЭБУ, работающие по электромагнитному принципу, предохранительный клапан, запорный клапан, функция которого предотвращать в нерабочем состоянии опускание кузова. В систему управления подвески входят ЭБУ и электромагнитные клапаны.

Место резервуара рабочей жидкости находится прямо над гидроэлектронным блоком. Ситроен в подвеске Гидрактив 3 применяет рабочую жидкость LDS оранжевый цвета, которая сменила зеленая жидкость LHM.

Далее, стойка передней подвески, помимо своей прямого предназначения, включает в себе также гидропневматический упругий компонент и гидроцилиндр. Между ними находится амортизаторный клапан, который обеспечивает гашение колебаний кузова.

Далее, гидропневматический упругая составляющая является металлической сферой, у которой внутри есть разделение в виде эластичной многослойной мембраны. Над этой мембраной находится сжатый азот (в газообразней форме), а под ней – специальная жидкость. Последняя передает давление внутри системы, а газ выступает в роли упругого элемента.

Тройка с плюсом, так называется новая версия подвески Hydractive 3+, имеет по одному установленному упругому элементу для каждого колеса и по одной дополнительной сфере для каждой оси. Смысл применения дополнительных упругих элементов, в том, что это существенно расширяет параметры регулировок жесткости подвески. Сферы нового поколения имеют серый цвет и обладают потрясающей работоспособностью в пределах 200 – 250 т. км пробега!

Читайте также:  Устройство BMW X6


Роль гидравлических цилиндров заключается в том, чтобы нагнетать жидкость в упругие элементы для обеспечения и регулирования клиренса, высоты положения кузова машины, и его положении перпендикулярно по отношению к дорожному покрытию. Гидроцилиндр системы снабжается поршнем, который имеет шток, соединенный с предназначенным для этого рычагом в подвеске. По своей конструкции задние гидропневматические цилиндры аналогичны передним (не забываем, что тут Гидрактив интегрирован в стойки), однако располагаются под горизонтальным углом.

Регулятор жесткости отвечает за изменением жесткости подвески. Он снабжён электромагнитным клапаном регулирования жесткости, двумя дополнительными амортизаторными клапанами и золотником. На регуляторе жесткости зафиксирована дополнительная сфера. Регулятором жесткости снабжена подвеска как спереди, так и сзади. Регулятор жесткости при переходе в мягкий режим подвески все гидропневматические упругие составляющие «сплачивает» между собой, и тогда достигается наивысший объем газа, естественно электромагнитный клапан обесточен при этом. При переходе в спортивный или жёсткий режим подаётся напряжение на электромагнитный клапан, и в отличии от предыдущего комфортного режима стойки, дополнительные сферы и задние цилиндры разъединяются и изолируются друг от друга.

В систему управления гидропневматической подвески включены ЭБУ, входные и исполнительные механизмы.

Входные сенсоры и селектор режимов работы относятся к входным устройствам. Входные сенсоры преобразуют определённые характеристики, внешние моменты в электрические сигналы. Ситроен в гидропневматической подвеске Гидрактив 3 применяет датчики, или сенсоры положения кузова машины по высоте и угловой сенсор рулевого колеса. Сенсор положения кузова машины по высоте информирует о среднем значении высоты кузова. На автомобили Ситроен устанавливается два или четыре подобных сенсора. А датчик угла поворота баранки следит за направлением и скоростью вращения руля и анализирует эти данные. Помимо авто-режима есть и селектор режимов работы, который позволяет вручную (то есть принудительно) контролировать не только высоту кузова, но и регулировать жёсткость гидропневмоподвески.

ЭБУ получает сигналы от входных механизмов, обрабатывает их в соответствии с заложенной в нём программами и далее «решает» какие управляющие воздействия передать на исполнительные устройства. ЭБУ к своей работе также подключает систему ЭБУ двигателя и АБС тормозов. На этом снаряжение не заканчивается – к исполнительным механизмам контроля подвески третьего Гидрактива относятся электромотор насоса гидравлического механизма, электрокорректор фар и электромагнитные клапаны для обеспечения и регулирования высоты вкупе с жесткостью подвески.

Электромотор изменяет скорость вращения под управлением, соответственно производительность насоса и давление в нужный момент под определённое условие в системе изменяются. В подвеске третьей генерации Гидрактив используется четыре электромагнитных клапана для контроля высоты, два из которых для передней подвески и два для задней. Один из них впускной и выпускной для каждой оси. В регуляторах жесткости находятся электромагнитные клапаны регулятора жесткости.

«Гидропневматика» Hydractive третьей серии предоставляет:

* автоматическое и ручное (принудительное) регулирование дорожного просвета автомобиля;

* автоматическое и ручное (принудительное) регулирование жесткости подвески;

Система всегда следит за автомобилем, а именно за скоростью движения автомобиля, манерой вождения конкретного водителя за рулём – за обгонами и торможениями, чтобы подстраиваться под это, и за качеством дороги и т.д. И исходя из этих данных осуществляется авторегулирование дорожного просвета. Если скорость движения по автомагистрали более чем 110 км/ч, то автоматикой дорожный просвет машины опускается на 15 мм. И подвеска становится жёстче, руль наливается спортивной тяжестью. Клиренс машины автоматически увеличивается на двадцать мм, когда автомобиль сталкивается с плохими дорожными условиями, но при условии, что скорость на спидометре не превышает 60 км/ч. За высоту подъема кузова «отвечает» объем специальной жидкости, которая циркулирует в контуре системы. Её объем дозируется регулятором положения автомобиля. Также, работа гидропневматической подвески гарантирует сохранение выбранного уровня кузова над дорогой при перемещении колёс по лёгкому бездорожью и неровному дорожному покрытию. Ситроен благодаря гидропневмоподвеске постоянно поддерживает заданную высоту кузова, невзирая на нагрузку.

Регулирование жесткости подвески происходит автоматически, и реализовано в версии подвески «Экстендед», то есть расширенной версии Hydractive под названием 3+. Здесь режимы жесткости изменение автоматически в зависимости от конкретного типа движения, то есть учитывается ускорение, движение по прямой, в поворотах, торможение и т.д. Для того чтобы «умная» автоматика приняла решения, ею учитываются такие факторы, как скорость машины, его ускорение, как продольное, так и поперечное, изменение высоты подвески, скорость вращения и угол поворота руля, увеличение или уменьшение тяги двигателя, изменение давления в тормозном механизме. Поэтому в жёстком режиме Ситроен С5 напоминает Пятёрку BMW, а в комфортном режиме имитирует Роллс-ройс! Далее в зависимости от конкретного условия мозги системы автоматически начинают воздействовать на электромагнитный клапан регулятора жёсткости, что переводит подвеску в спортивно-жёсткий или комфортно-мягкий режим. Жёсткость меняется как для отдельного упругого элемента при прохождении поворотов, так и всей системы во время прямолинейного движения.

Конструкция гидропневматической подвески предусматривает принудительное, то есть ручное управление дорожным просветом автомобиля, что в конкретных условиях помогает преодолению препятствий, бездорожью, а также это даёт широкие возможности при погрузке/выгрузки и уборке автомобиля. Расширенная версия подвески Гидрактив под названием 3+ также предусматривает ручное изменение и жесткость подвески.

Упругие гидропневматические элементы

Устройство и эксплуатация троллейбуса

Механическое оборудование троллейбусов


Наши дополнительные сервисы и сайты:


e-mail:
office@matrixplus.ru
tender@matrixplus.ru

icq:
613603564

skype:
matrixplus2012

телефон
+79173107414
+79173107418

г. С аратов

Просвещаемся Как правильно и быстро отмыть борта и днище катера от водорослей, тины, ракушечника, водного камня?

Вот так с Фаворит-К для мойки катеров можно быстро и без особых усилий отмыть днище и борта катера от любых водных отложений. Читать далее про Фаворит-К.

Статистика

Упругий пневматический элемент подвески

Упругий пневматический элемент (рис. 50) предназначен для восприятия вертикальных нагрузок, передаваемых от основания кузова на мосты, а также для смягчения ударяв при проезде неровной дороги. Он состоит из резинокордной оболочки рукавного типа (320X200, модель М-48) 6, поршня верхнего 8 и нижнего 4 фланцев, крышки 7 и буфера 5. В днище поршня 3 имеются два отверстия 2 для крепления элемента. В верхний фланец вмонтирован штуцер 9 для подачи в пневмоэлемент сжатого воздуха.

Крепление упругого пневмоэлемента осуществляется следующим образом. На управляемом мосту пневмоэлемент поршнем 3 устанавливается на приливы оси моста, которые имеют два отверстия, совпадающие с отверстиями 2 в поршне пневмоэлементов. Через эти отверстия двумя болтами осуществляется крепление внизу. Вверху штуцер 9 проходит через отверстие в плите основания кузова. На штуцер навертывается гайка. На ведущем мосту низ пневмоэлемента крепится к кронштейнам подрамника двумя болтами, а верх – аналогично управляемому мосту.

Рис. 50. Упругий элемент пневматической подвески троллейбуса ЗИУ-9Б: а -в разрезе, б – отдельные детали; 1 – болт 2 – отверстия. 3 – поршень, 4 – нижний фланец, 5 – буфер, 6 – резинокордная оболочка, 7-крышка, 8 – верхний фланец, 9 – штуцер

Двухступенчатый регулятор (JTA3-699A), представленный на рис. 51, осуществляет автоматическое поддержание положения кузова по отношению к дорожному покрытию на постоянном уровне. Регулятор крепится к основанию кузова и приводным рычагом 5, насаженным на вал 3 привода, соединяется с осью ведомого моста или подрамником на ведущем мосту.

На ведомом мосту установлен один регулятор, а на ведущем – два. К каждому регулятору ведущего моста присоединены два пневмоэлемента с соответствующей стороны- левая пара и правая пара пневмоэлементов.

К регулятору положения кузова подключены два воздухопровода: один от воздушных резервуаров .

пружина клапана, 16 – шток, 17 – кулачок, 18 – фильтр, 19 – фиксатор, 20 – масленка, 21 – к резервуару пневмоподвески, 22 – к пневмоэлементам, 23 – пластина” alt=”Рис. 51. Регулятор положения кузова троллейбуса ЗИУ-9Б: 1 – корпус регулятора, 2- сальник, 3 – вал привода, 4 – болт М8Х16, 5 – рычаг привода, 6,7 – уплотняющие кольца, 8 – впускной клапан первой ступени, 9 – впускной клапан второй ступени, 10 – пружина обратного клапана, 11 – обратный клапан, 12-пробка, 13 – распорная втулка, 14 – седло клапана, 15-> пружина клапана, 16 – шток, 17 – кулачок, 18 – фильтр, 19 – фиксатор, 20 – масленка, 21 – к резервуару пневмоподвески, 22 – к пневмоэлементам, 23 – пластина”>

Рис. 51. Регулятор положения кузова троллейбуса ЗИУ-9Б: 1 – корпус регулятора, 2- сальник, 3 – вал привода, 4 – болт М8Х16, 5 – рычаг привода, 6,7 – уплотняющие кольца, 8 – впускной клапан первой ступени, 9 – впускной клапан второй ступени, 10 – пружина обратного клапана, 11 – обратный клапан, 12-пробка, 13 – распорная втулка, 14 – седло клапана, 15- пружина клапана, 16 – шток, 17 – кулачок, 18 – фильтр, 19 – фиксатор, 20 – масленка, 21 – к резервуару пневмоподвески, 22 – к пневмоэлементам, 23 – пластина

В нейтральном положении при нормально отрегулированной высоте клапаны 8 и 9 закрыты. При данном положении пневмоэлементы разобщены с воздушными резервуарами – впуска и выпуска сжатого воздуха не происходит.

При увеличении нагрузки на троллейбус высота упругого пневматического элемента уменьшается и кузов опускается. При этом приводной рычаг 5 перемещается, поворачивая вал привода 3 регулятора. Кулачок 17, эксцентрично закрепленный на валу 3, поднимает шток 16, который открывает впускной клапан 8 первой ступени. Сжатый Вйздух из резервуаров пневмоподвески проходит через жиклер в пробке 12, отжимает обратный клапан 11 и далее через жиклер в штоке 16 проходит в воздухопровод упругого элемента. Если деформация сжатия упругого элемента увеличится, шток 16 поднимется выше и откроет впускной клапан 9 второй ступени. Сжатый воздух более свободно будет поступать в упругий элемент, наполняя его и поднимая кузов.

При уменьшении нагрузки на подвеску высота упругого элемента увеличивается и кузов троллейбуса переместится вверх. Приводной рычаг 5 повернет вал привода 3 в противоположную сторону. Шток 16 переместится вниз и откроет выпускной жиклер, соединяющий упругий элемент с атмосферой, при этом часть воздуха выйдет из пневмоэлемента через фильтр 18.

Средства для мойки


форсунок в ультразвуковых ваннах и на стендах

Дезинфицирующие средства

широкого применения

для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора

Моющие средства

для железнодорожного транспорта, сертифицированные ВНИИЖТ- “Фаворит К” и “Фаворит Щ”, внутренняя и наружная замывка вагонов.

Ссылка на основную публикацию