УСТРОЙСТВО ЭЛЕКТРОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

Система управления двигателем

Системой управления двигателем называется электронная система управления, которая обеспечивает работу двух и более систем двигателя. Система является одним из основных электронных компонентов электрооборудования автомобиля.

Генератором развития систем управления двигателем в мире является немецкая фирма Bosch. Технический прогресс в области электроники, жесткие нормы экологической безопасности обусловливают неуклонный рост числа подконтрольных систем двигателя.

Свою историю система управления двигателем ведет от объединенной системы впрыска и зажигания. Современная система управления двигателем объединяет значительно больше систем и устройств. Помимо традиционных систем впрыска и зажигания под управлением электронной системы находятся: топливная система, система впуска, выпускная система, система охлаждения, система рециркуляции отработавших газов, система улавливания паров бензина, вакуумный усилитель тормозов.

Термином “система управления двигателем” обычно называют систему управления бензиновым двигателем. В дизельном двигателе аналогичная система называется система управления дизелем.

Система управления двигателем включает входные датчики, электронный блок управления и исполнительные устройства систем двигателя.

Входные датчики измеряют конкретные параметры работы двигателя и преобразуют их в электрические сигналы. Информация, получаемая от датчиков, является основой управления двигателем. Количество и номенклатура датчиков определяется видом и модификацией системы управления. Например, в системе управления двигателем Motronic-MED применяются следующие входные датчики: давления топлива в контуре низкого давления, давления топлива, частоты вращения коленчатого вала, Холла, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Каждый из датчиков используется в интересах одной или нескольких систем двигателя.

Электронный блок управления двигателем принимает информацию от датчиков и в соответствии с заложенным программным обеспечением формирует управляющие сигналы на исполнительные устройства систем двигателя. В своей работе электронный блок управления взаимодействует с блоками управления автоматической коробкой передач, системой ABS (ESP), электроусилителя руля, подушками безопасности и др.

Исполнительные устройства входят в состав конкретных систем двигателя и обеспечивают их работу. Исполнительными устройствами топливной системы являются электрический топливный насос и перепускной клапан. В системе впрыска управляемыми элементами являются форсунки и клапан регулирования давления. Работа системы впуска управляется с помощью привода дроссельной заслонки и привода впускных заслонок.

Катушки зажигания являются исполнительными устройствами системы зажигания. Система охлаждения современного автомобиля также имеет ряд компонентов, управляемых электроникой: термостат (на некоторых моделях двигателей), реле дополнительного насоса охлаждающей жидкости, блок управления вентилятора радиатора, реле охлаждения двигателя после остановки.

В выпускной системе осуществляется принудительный подогрев кислородных датчиков и датчика оксидов азота, необходимый для их эффективной работы. Исполнительными устройствами системы рециркуляции отработавших газов являются электромагнитный клапан управления подачей вторичного воздуха, а также электродвигатель насоса вторичного воздуха. Управление системой улавливания паров бензина производится с помощью электромагнитного клапан продувки адсорбера.

Принцип работы системы управления двигателем основан на комплексном управлении величиной крутящего момента двигателя. Другими словами, система управления двигателем приводит величину крутящего момента в соответствия с конкретным режимом работы двигателя. Система различает следующие режимы работы двигателя:

  • запуск;
  • прогрев;
  • холостой ход;
  • движение;
  • переключение передач;
  • торможение;
  • работа системы кондиционирования.

Изменение величины крутящего момента производиться двумя способами – путем регулирования наполнения цилиндров воздухом и регулированием угла опережения зажигания.

ОСОБЕННОСТИ УСТРОЙСТВА СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

Особенности устройства СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

На автомобилях применяют электронную систему управления двигателем (ЭСУД) с системой распределенного впрыска топлива.

Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается отдельной форсункой. Система впрыска топлива позволяет снизить токсичность отработавших газов при улучшении ходовых качеств автомобиля.

Существуют два типа систем распределенного впрыска – с обратной связью и без нее.

Причем системы обоих типов могут быть с импортными комплектующими или с отечественными. Устанавливают контроллеры (электронные блоки управления) тоже разных типов. Все эти системы имеют свои особенности устройства, диагностики и ремонта, они подробно описаны отдельно в соответствующих руководствах по ремонту конкретных систем впрыска топлива.

На автомобили семейства LADA SAMARA-2 могут быть установлены следующие ЭСУД, обеспечивающие выполнение норм токсичности.

1. ЭСУД-2111, обеспечивающая выполнение норм токсичности России, с контроллером М1.5.4 и с недавнего времени с контроллером «Январь-5.1.1» (эти контроллеры взаимозаменяемы, хотя имеют небольшие отличия в диагностике). Последняя отличается отсутствием адсорбера паров топлива в моторном отсеке и круглой формой датчика массового расхода воздуха (фирмы Bosch).

2. ЭСУД-2111, обеспечивающая выполнение норм токсичности ЕURO II, с контроллером MP7.0HFM.

3. ЭСУД-2111, обеспечивающая выполнение норм токсичности ЕURO II, с контроллерами M1.5.4N и «Январь-5.1». Систему, предназначенную для комплектации автомобилей внутреннего рынка России, постоянно модернизируют: для последних версий программного обеспечения введена диагностика выходных цепей.

Если автомобиль оборудован системой с обратной связью (применяется в основном на экспортных автомобилях), в системе выпуска отработавших газов установлен нейтрализатор и датчик концентрации кислорода, который и обеспечивает обратную связь. Датчик отслеживает концентрацию кислорода в отработавших газах, а электронный блок управления по его сигналам поддерживает соотношение воздуха и топлива, обеспечивающее наиболее эффективную работу нейтрализатора.

В системе впрыска без обратной связи не устанавливают нейтрализатор и датчик концентрации кислорода, а для регулировки концентрации СО в отработавших газах служит СО-потенциометр. В этой системе не применяют и систему улавливания паров бензина.

Возможен вариант системы впрыска и без СО-потенциометра, тогда содержание СО регулируется с помощью диагностического прибора.

Рис. 9.12. Расположение вподкапотном пространстве элементов системы управления двигателем с распределенным впрыском топлива без обратной связи: 1–датчик массового расхода воздуха; 2–датчик скорости (на фото не виден, расположен на коробке передач); 3–регулятор давления топлива; 4–датчик температуры охлаждающей жидкости (на фото не виден, расположен на выпускном патрубке системы охлаждения); 5–модуль зажигания (на фото не виден, расположен ниже и закреплен при помощи кронштейна к блоку); 6–датчик детонации (на фото не виден, расположен на блоке ниже между вторым и третьим циллиндром); 7–датчик положения коленчатого вала (на фото не виден, расположен в приливе крышки масляного насоса); 8–топливная рампа с форсунками; 9–датчик положения дроссельной заслонки; 10–регулятор холостого хода (на фото не виден, расположен на дроссельном узле); 11–контроллер (на фото не виден, расположен в салоне автомобиля под щитком панели приборов на кронштейне); 12–предохранители и реле системы управления двигателем (на фото не видны, расположены в салоне автомобиля под щитком панели приборов с правой стороны); 13–диагностический разъем (на фото не виден, расположен в салоне автомобиля на щитке панели приборов под пепельницей)

1. Прежде чем снимать любые узлы системы управления впрыском, отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Не пускайте двигатель, если плохо затянуты наконечники проводов на аккумуляторной батарее.

3. Никогда не отсоединяйте аккумуляторную батарею от бортовой сети автомобиля при работающем двигателе.

4. При зарядке аккумуляторной батареи отсоединяйте ее от бортовой сети автомобиля.

5. Не подвергайте электронный блок управления (ЭБУ) температуре выше

65 °С в рабочем состоянии и выше 80 °С в нерабочем (например, в сушильной камере). Надо снимать ЭБУ с автомобиля, если эта температура будет превышена.

6. Не отсоединяйте от ЭБУ и не присоединяйте к нему разъемы жгута проводов при включенном зажигании.

7. Перед выполнением электродуговой сварки на автомобиле отсоединяйте провода от аккумуляторной батареи и разъемы проводов от ЭБУ.

8. Все измерения напряжения выполняйте цифровым вольтметром, внутреннее сопротивление которого не менее 10 МОм.

9. Электронные узлы, применяемые в системе впрыска, рассчитаны на очень малое напряжение и поэтому могут быть легко повреждены электростатическим разрядом. Чтобы не допустить повреждений ЭБУ электростатическим разрядом:

– не прикасайтесь руками к штекерам ЭБУ или к электронным компонентам на его платах;

– при работе с ППЗУ (программируемое постоянное запоминающее устройство) блока управления не дотрагивайтесь до выводов микросхемы.

В системе зажигания применяется модуль зажигания 5 (рис. 9.12), состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэтому не требует обслуживания. Она также не имеет регулировок, так как управление зажиганием осуществляет контроллер 11.

В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1–4 и 2–3, искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра), и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй – с бокового на центральный.

Применяются свечи типа А17ДВРМ.

Управляет зажиганием в системе контроллер 11. Датчик 7 положения коленчатого вала подает в контроллер опорный сигнал, на основе которого контроллер делает расчет последовательности срабатывания катушек в модуле зажигания. Для точного управления зажиганием контроллер использует следующую информацию:

– частота вращения коленчатого вала;

– нагрузка двигателя (массовый расход воздуха);

– температура охлаждающей жидкости;

– положение коленчатого вала;

Более подробно система управления двигателем описана в специальном издании «Системы управления двигателями ВАЗ-2111 (1,5 л, 8 кл.), ВАЗ-2112 (1,5 л, 16 кл.), ВАЗ-21214-36 (1,7 л, 8 кл.) с распределенным последовательным впрыском топлива (контроллер МР7.0НFM, нормы токсичности Евро-3) автомобилей ВАЗ-21083, 21093, 21099, 21102, 21103, 2111, 21113, 2112, 21122, 21214. Руководство по диагностике и ремонту» (серия «Мастер-класс»), подготовленном Дирекцией по техническому развитию АО «АВТОВАЗ» и изданном в 2004 г. «Издательским Домом Третий Рим». В этом же руководстве описаны методы диагностики системы по кодам неисправностей с помощью диагностического прибора DST-2.

Система управления двигателем включает в себя следующие элементы.

1. Контроллер (электронный блок управления), расположенный под щитком панели приборов на кронштейне, – управляющий центр системы впрыска топлива. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и эксплуатационные показатели автомобиля.

В контроллер поступает следующая информация:

– положение и частота вращения коленчатого вала;

– массовый расход воздуха двигателем;

– температура охлаждающей жидкости;

– положение дроссельной заслонки;

– концентрация кислорода в отработавших газах (в системе с обратной связью);

– наличие детонации в двигателе;

– напряжение в бортовой сети автомобиля;

– положение распределительного вала (в системе с последовательным распределенным впрыском топлива);

– запрос на включение кондиционера (если он установлен на автомобиле).

На основе полученной информации контроллер управляет следующими системами и приборами:

– топливоподачей (форсунками и электробензонасосом);

– регулятором холостого хода;

– адсорбером системы улавливания паров бензина (если эта система установлена на автомобиль);

Читайте также:  Устройство телескопической стойки

– вентилятором системы охлаждения двигателя;

– муфтой компрессора кондиционера (если он установлен на автомобиль);

Контроллер включает выходные цепи (форсунки, различные реле и т.д.) путем замыкания их на «массу» через выходные транзисторы контроллера. Единственное исключение – цепь реле топливного насоса. Только на обмотку этого реле контроллер подает напряжение +12 В.

Контроллер оснащен встроенной системой диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «Сheck Engine». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.

Контроллер обладает тремя видами памяти: оперативное запоминающее устройство (ОЗУ), однократно программируемое постоянное запоминающее устройство (ППЗУ) и электрически программируемое запоминающее устройство (ЭПЗУ).

Оперативное запоминающее устройство – это «блокнот» контроллера. Микропроцессор контроллера использует его для временного хранения измеряемых параметров для расчетов и промежуточной информации.

Микропроцессор может по мере необходимости вносить в него данные или считывать их.

Микросхема ОЗУ смонтирована на печатной плате контроллера. Эта память энергозависима и требует бесперебойного питания для сохранения. При прекращении подачи питания содержащиеся в ОЗУ диагностические коды неисправностей и расчетные данные стираются.

Программируемое постоянное запоминающее устройство (ППЗУ).В нем находится общая программа, в которой содержится последовательность рабочих команд (алгоритмы управления) и различная калибровочная информация. Эта информация представляет собой данные управления впрыском, зажиганием, холостым ходом и т.п., которые зависят от массы автомобиля, типа и мощности двигателя, от передаточных отношений трансмиссии и других факторов. ППЗУ называют еще запоминающим устройством калибровок.

Содержимое ППЗУне может быть изменено после программирования. Эта память не нуждается в питании для сохранения записанной в ней информации, которая не стирается при отключении питания, т.е. эта память является энергонезависимой. ППЗУ установлено в панельке на плате контроллера и может выниматься из контроллера и заменяться.

ППЗУ индивидуально для каждой комплектации автомобиля, хотя на разных моделях автомобилей может быть применен один и тот же унифицированный контроллер. Поэтому при замене ППЗУ важно установить правильный номер модели и комплектации автомобиля. А при замене дефектного контроллера необходимо оставлять прежнее ППЗУ (если оно исправно).

Электрически программируемое запоминающее устройство используется для

временного хранения кодов-паролей противоугонной системы автомобиля (иммобилизатора). Коды-пароли, принимаемые контроллером от блока управления иммобилизатором (если он есть на автомобиле), сравниваются с кодами, хранимыми в ЭПЗУ, и при этом разрешается или запрещается пуск двигателя. Эта память энергонезависима и может храниться без подачи питания на контроллер.

2. Датчик температуры охлаждающей жидкости 4 представляет собой термистор (резистор, сопротивление которого изменяется от температуры). Датчик ввернут в выпускной патрубок охлаждающей жидкости на головке блока цилиндров. При низкой температуре сопротивление датчика высокое (при – 40 °С – 100 кОм), при высокой температуре – низкое (при 100 °С – 177 Ом).

Температуру охлаждающей жидкости контроллер рассчитывает попадению напряжения на датчике. Падение напряжения высокое на холодном двигателе и низкое на прогретом. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет контроллер.

3. Датчик детонации 6 прикреплен к верхней части блока цилиндров. Он улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. Контроллер по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.

4. Датчик массового расхода воздуха 1 фирмы Bosch или…

…GM расположен между воздушным фильтром и шлангом впускной трубы. В нем находятся температурные датчики и нагревательный резистор. Проходящий воздух охлаждает один из датчиков, а электронная схема датчика преобразует эту разность температур в выходной сигнал для электронного блока управления.

В разных вариантах систем впрыска топлива возможно применение датчиков массового расхода воздуха двух типов. Они различаются по устройству и характеру выдаваемого сигнала, который может быть частотным или аналоговым. В первом случае в зависимости от расхода воздуха меняется частота сигнала, во втором случае – напряжение. ЭБУ использует информацию от датчика массового расхода воздуха для определения длительности импульса открытия форсунок.

5. СО-потенциометр установлен на автомобилях с системой впрыска без обратной связи (без нейтрализатора и датчика концентрации кислорода) в моторном отсеке и представляет собой переменный резистор. Он выдает в ЭБУ сигнал, который используется для регулировки состава топливовоздушной смеси с целью получения нормированного уровня концентрации оксида углерода (СО) в отработавших газах на холостом ходу. СО-потенциометр подобен винту качества смеси в карбюраторах. Регулировка содержания СО с помощью СО-потенциометра выполняется только на станции технического обслуживания с применением газоанализатора.

6. Датчик скорости автомобиля установлен на коробке передач. Принцип действия датчика основан на эффекте Холла. Датчик выдает на контроллер прямоугольные импульсы напряжения, частота которых пропорциональна скорости вращения ведущих колес.

7. Датчик положения дроссельной заслонки 9 установлен сбоку на дроссельном узле и связан с осью дроссельной заслонки. Датчик представляет собой потенциометр, на один конец которого подается «плюс» напряжения питания (5В), другой его конец соединен с «массой». С третьего вывода потенциометра (от ползунка) идет выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно около 0,5 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть около 4,5 В. Отслеживая выходное напряжение датчика, контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует какой-либо регулировки, так как контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

8. Регулятор холостого хода 10 регулирует частоту вращения коленчатого вала в режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается по сигналам контроллера. Полностью выдвинутая игла регулятора (что соответствует 0 шагов) перекрывает поток воздуха. Когда игла вдвигается, обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

9. Датчик положения коленчатого вала 7 – индуктивного типа, предназначен для синхронизации работы контроллера с ВМТ поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала.

Датчик установлен на крышке масляного насоса напротив задающего диска на шкиву привода генератора. Задающий диск представляет собой зубчатое колесо с 58 равноудаленными (6°) впадинами. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса синхронизации («опорного» импульса), который необходим для согласования работы контроллера с ВМТ поршней в 1-м и 4-м цилиндрах.

При вращении коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1 ±0,2) мм.

Контроллер по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

10. Датчик концентрации кислорода (лямбда-зонд) применяют в системе впрыска с обратной связью и устанавливают на приемной трубе глушителей. Кислород, содержащийся в отработавших газах, реагирует с датчиком, создавая разность потенциалов на его выходе, которая изменяется приблизительно от 0,1 В (высокое содержание кислорода – бедная смесь) до 0,9 В(мало кислорода – богатая смесь).

Для нормальной работы температура датчика должна быть не ниже 360 °С. Поэтому для быстрого прогрева двигателя после его пуска в датчик встроен нагревательный элемент.

Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую команду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потенциалов на выходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов), дается команда на обеднение смеси.

ЭСУД: что это такое в автомобиле

Одним из главных элементов современного автомобиля является ЭСУД – электронная система управления двигателем. Именно она обеспечивает работу двигателя в оптимальном режиме мощности и, потребления топлива, кроме того, на нее возложена функция управления многочисленными функциями и рабочими процессами, протекающими в автомобиле. В общем смысле ЭСУД представляет собой компьютер ДВС, в котором обрабатываются показания датчиков и в соответствии с ними подаются те или иные команды на прочие системы и агрегаты. Однако это определение слишком общее, поэтому для понимания сущности и роли данного элемента следует разобраться в тонкостях его работы.

Что такое ЭСУД в автомобиле

Данная система объединяет в себе большое количество различных компонентов:

  • датчики и подсистемы, фиксирующие показания и рабочее состояние различных агрегатов двигателя;
  • передающие провода;
  • электронный блок управления – центральный элемент ЭСУД и своеобразный «мозг» автомобиля, в котором данные, получаемые с датчиков, обрабатываются и интерпретируются.

Необходимость внедрения электронной системы управления рабочими параметрами двигателя стала очевидной в процессе оптимизации процессов зажигания и впрыска – механическая регулировка и контроль не обеспечивали достаточной точности и эффективности, в результате чего КПД использовавшихся ранее ДВС был низким. На современных же моделях широко используются электронные контрольные модули, которые отвечают не только за вышеназванные параметры, но и за многие другие: впуск топливной смеси в цилиндры, охлаждение двигателя, выпуск отработанных газов, улавливание паров бензина и т.д.

Как правило, ЭСУД объединяется в единый комплекс с другими системами автомобиля, включая блок управления КПП, рулевой электроуситель, ABS, систему активной безопасности и т.д.

Из чего состоит ЭСУД

В состав электронной системы управления двигателем входят самые разные компоненты, в совокупности обеспечивающие комплексную регулировку рабочих параметров ДВС. К основным ее элементам относятся следующие:

  • электронный контроллер – основная часть всей системы, именно здесь анализируются показания датчиков, проводятся вычисления и формируются команды исполнительным агрегатам и подсистемам;
  • датчик массового расхода воздуха – фиксирует количество поступающего в цилиндры воздуха и в соответствии с этими данными изменяет объем подаваемого топлива;
  • датчик скорости – фиксирует текущую скорость и преобразует полученное значение в электронный сигнал;
  • кислородные датчики – определяет количество кислорода в выхлопных газах до и после стадии нейтрализации;
  • датчик неровной дороги – важный элемент современных электронных подвесок, анализирует силу вибрации кузова и преобразует полученное значение в сигнал;
  • датчик фаз – подает на контроллер сигнал при поднятии первого поршня в высшую точку на такте сжатия;
  • датчик температуры жидкости в системе охлаждения;
  • датчик положения коленчатого вала – фиксирует величину угла при повороте вала;
  • датчик дроссельной заслонки – определяет угол открытия заслонки;
  • датчик детонации – определяет интенсивность детонационных процессов в двигателе по уровню поступающих шумов;
  • модуль зажигания – в нем аккумулируется энергия, необходимая для поджигания топливовоздушной смеси, а также обеспечивает требуемое напряжение свечей;
  • форсунки – отвечают за распределение топлива между цилиндрами;
  • регулятор топливного давления – поддерживает требуемое давление при подаче топлива;
  • модуль бензонасоса – отвечает за избыточное давление в питающей двигатель системе;
  • адсорбер – необходим для улавливания бензиновых испарений;
  • нейтрализатор – уменьшает токсичность выхлопа двигателя за счет каталитических реакций;
  • датчик холостого хода – регулирует питание двигателя при холостой работе;
  • диагностический сигнал – лампа на приборной панели, загорание которой свидетельствует о той или иной неисправности в работе двигателя;
  • диагностический интерфейс – позволяет подключать к ЭСУД специализированное диагностическое оборудование.
Читайте также:  Устройство токарно-винторезного станка

Как видно, электронная система управления двигателем включает в себя внушительное количество самых разных датчиков и регуляторов. При этом все поступающие с них данные анализируются в едином электронном блоке, который представляет собой полноценный микрокомпьютер.

Читайте также: Что такое CAN шина в автомобиле и для чего она нужна.

Какие задачи выполняет ЭСУД

Большое количество компонентов, входящий в состав электронной системы управления, обусловливает и широкое разнообразие выполняемых ей задач. По большому счету, она полностью управляет работой двигателя, оперативно изменяет его параметры и фиксирует его состояние. К наиболее важным функциям ЭСУД можно отнести следующие:

  • расчет оптимального объема топлива и момента его подачи в камеру сгорания;
  • определение момента генерации искры, воспламеняющей ТВС;
  • регулировка угла опережения зажигания;
  • контроль положения коленвала;
  • самодиагностика системы, всех ее подсистем и исполнительных механизмов.

Все элементы ЭСУД работают в комплексе, что позволяет достигать оптимальной производительности мотора. Если в ходе диагностики выявляются какие-либо неисправности, то на экран либо приборную панель выводится соответствующее уведомление. Если обнаруженные нарушения создают угрозу двигателю и автомобилю в целом, то система управления отдает команду на его отключение. Если поломка не такая серьезная, то можно временно продолжать движение – но в любом случае нужно как можно скорее обратиться на автосервис.

Для определения действительной неисправности необходимо использовать специальное диагностическое оборудование. При подключении к соответствующему разъему оно считает информацию, расшифрует код ошибки и предоставит точные сведения о выявленной неполадке.

В этом выражается еще одна важная функция ЭСУД – сокращение затрат времени и денег на ремонтные работы. Работникам СТО будет достаточно только получить код ошибки, после чего можно сразу же приступать к устранению поломки.

Читайте также: Что такое Что такое инжектор в автомобиле и как он устроен.

Электронная система управления двигателем в автомобиле: разбираем, что это и принцип работы

Сегодня подавляющее количество автомобилей, выпускающихся во всем мире, оборудованы ЭСУД. Это позволяет сделать работу двигателя более эффективной, а саму езду на автомобиле более безопасной и комфортной. Бензиновый мотор или дизельный – не важно.

ЭСУД что такое, расшифровка

ЭСУД – электронная система управления двигателем. Представляет собой комплект электронно-вычислительного оборудования, отвечающего за работу только двигателя или двигателя вместе с другими системами легковой машины. По сути это автомобильный бортовой компьютер.

Виды систем

ЭСУД делятся на два типа, имеющие свои преимущества и недостатки:

  1. В первом случае, который часто называют английской аббревиатурой ECM (Engine Control Module), компьютер управляет только мотором.
  2. Во втором, ECU (Electronic Control Unit), он отвечает за все системы машины: двигатель, подвеску и т. д.

ВАЖНО! Общий для всех систем блок применяется чаще, поскольку это упрощает внутреннее устройство автомобиля с конструктивной точки зрения и удешевляет сборку. То есть, проще провести все провода от всех датчиков в одно место, чем устанавливать их в разные места.

С другой стороны, единый блок – менее безопасный вариант, чем «раздельные зоны ответственности» для разных систем. Его неисправность отразится на работе всех механизмов машины в то время как отдельные блоки работают независимо друг от друга. Например, тормозная система может сработать корректно при неисправности управления или двигателя.

Единый блок управления состоит из следующих элементов:

  • Моторно-трансмиссионный блок.
  • Блок контроля тормозной системы.
  • Центральный блок управления.
  • Синхронизационный блок.
  • Блок контроля кузова.
  • Блок контроля подвески.

Где находится ЭСУД

В подавляющем большинстве случаев ЭСУД, точнее – ЭБУ (электронный блок управления), находится под приборной панелью. В разных моделях автомобилей он может находиться по центру или в районе руля. Как правило, добраться до него достаточно просто с помощью обычной отвертки. Такое расположение сделано для облегчения доступа. Визуально как отечественный, так и зарубежный ЭБУ представляет собой небольшой (обычно размером примерно с две ладони) плоский ящик с гнездами для проводов.

Устройство ЭСУД

Поскольку электронная система управления двигателем это, по сути, компьютер, технически она устроена примерно так же, как стандартный ПК. Система помнит базовые установки, заложенные производителем и следит за соблюдением этих параметров в процессе работы двигателя.

На техническом уровне блок состоит из:

  • Постоянного запоминающего устройства (ППЗУ). Это память, которая содержит базовый алгоритм управления мотором. Его можно изменить вручную. При отключении двигателя установки не удаляются.
  • Оперативное запоминающее устройство (ОЗУ). Память, которая обрабатывает оперативные данные, поступающие от систем: соответствие заданным в ППЗУ параметрам, ошибки и т.п. Устройство имеет дополнительный источник питания – от аккумулятора, поэтому оно может сохранять данные, даже если прерывать питание.
  • Электрически программируемое запоминающее устройство (ЭРПЗУ). Память, где хранятся коды противоугонной системы. Также отвечает за функционирование иммобилайзера.

Принцип работы ЭСУД

Главная задача системы – эффективная работа движка. Она на основании получаемой от различных узлов информации она регулирует крутящий момент, мощность и другие показатели в зависимости от режима работы мотора, комплектации ЭСУД и ее типа (самые популярные – м20, м73, м74, м86).

Стандартные режимы мотора, которые различает ЭСУД:

  • Запуск и прогревание.
  • Холостой ход.
  • Движение, торможение.
  • Смена передач.

Схема источников, от которых получает данные ЭСУД, зависит от модели авто и его комплектации. Обычно это датчики: положения коленвала, фаз, расхода воздуха, температуры охлаждающей жидкости, положения дроссельной заслонки, скорости, кислорода и детонации.

Кроме того, ЭСУД постоянно проводит самодиагностирование, также на основе показателей датчиков.

Диагностика

Помимо автоматической проверки корректности функционирования ЭСУД, специалисты рекомендуют проводить регулярное диагностирование системы. В среднем обслуживание стоит делать каждые 15 тыс км пробега. Диагностика ЭСУД проводится с помощью специального тестера, подключаемого в специальный разъем. Иногда используется беспроводной адаптер, использующий специальный протокол.

ВАЖНО! Лучше всего, если показатели будут расшифровываться специалистом, который на основании полученных данных может сделать вывод – какой конкретно элемент ЭСУД барахлит. После предварительных выводов, проводится более точная проверка вызывающего подозрения элемента.

Перед проведением тестов с помощью сканера, надо проверить питание системы и ее отдельных фрагментов. Причиной неисправности может быть поврежденная электропроводка, короткие замыкания, коррозия, различные помехи.

Неисправности и их причины

Выявление неисправностей ЭСУД можно начинать после обнаружения ряда признаков. Во-первых, при включении зажигания все лампочки сигнализатора системы должны загореться одновременно, таким образом система проверяет свой диагностический механизм. После запуска двигателя все должны одновременно потухнуть. Если какая-то из них загорается во время движения, это сигнализирует о проблемах в ДВС. В лучшем случае система может отключить двигатель, чтобы избежать тяжелых поломок. Список негативных ситуаций, в которым ведет неисправность ЭСУД, велик – может воздушить система охлаждения, не работать печка или термостат.

ВАЖНО! ЭСУД – тонкая система, поэтому описание проблем, которые могут случиться с электроникой может занять много времени.

В основном причинами неисправностей бывают:

  • Поломка датчиков, отправляющих в ЭСУД данные.
  • Поломки в самом блоке управления.
  • Поломки исполнительных устройств системы управления (рост сопротивления, обрыв обмотки электромагнитного клапана и т.д.).
  • Повреждение электропроводки.
  • Вмешательство посторонних в устройство электронных систем, вследствие чего могло произойти нарушение их целостности.


Часто ЭСУД ломается из-за механических повреждений. Это может быть не обязательно удар, для причинения вреда системе хватит сильной вибрации. Далее по проценту вероятности повреждения ЭСУД следуют: резкий перепад температур, коррозия, попадание влаги под защитный кожух из-за разгерметизации устройства. Также нередко корректная работа системы нарушается из-за некомпетентного вмешательства в ее функционирование.

Ремонт системы можно доверять только специалистам.

Типовые значения параметров ЭСУД

Типовые значения параметров системы зависят от множества факторов. В первую очередь – от марки авто. На них также влияет влажность, температура окружающей среды и т.д. Таблицы типовых параметров для конкретных марок авто, с помощью которых осуществляется идентификация ЭСУД, можно найти в интернете.

Очистка памяти контроллера ЭСУД

Функция сброса памяти используется для обнуления накопившихся в ЭСУД данных. Это полезно делать при замене датчиков, если требуется его перепрошивать или если автомобиль начал странно себя вести без видимых причин. Если не удалось найти эту функцию в меню ЭСУД, очищать память можно с помощью специального программного обеспечения, доступного в интернете. Процедура удаляет данные, накопившиеся при самообучении системы и возвращает заводские настройки. Проводится при выключенном двигателе.

Распиновка

Распиновка (распайка) – процесс определения принадлежности провода и разъема к тому или иному процессу, его назначение. Например, информация про кислород может приходить по одному кабелю, про охлаждение – по другому и т.д. В интернете можно найти подробный список расшифровки для самых популярных систем – Бош, Январь, Ителма.

Контроллер ЭБУ

Контроллер электронного блока управления – непосредственно сама плата с микропроцессорами. На практическом уровне разницы между терминами ЭБУ и ЭСУД нет. Отличие в том, что блок – физически коробка с электроникой, а система – это комплекс, включающий блок, датчики и рабочие процессы.

Датчик ЭСУД


Датчики электронной системы – один из главных ее элементов, от них зависит связь между механизмами и ЭБУ, качество управления движком. При профилактическом тестировании ЭСУД надо внимательно проверять соединение и сами датчики на все возможные повреждения (механические, от перегрева или коррозии и т.д.).

Главное реле

Главное реле системы запускает большинство процессов: в том числе электропитание датчиков, реле бензонасоса и вентилятор радиатора охлаждения двигателя, катушек зажигания и форсунок (инжектора). Главное реле защищает предохранитель.

Таблица масс ЭСУД в различных автомобилях

Массой в ЭСУД обычно выступает корпус машины. Если какой-то из контактов с массой теряет надежность, электросхема нарушается, качество работы системы падает. Например, двигатель начинает произвольно менять режим работы, набирая или сбрасывая обороты без участия водителя. Чтобы справиться с такой проблемой, надо знать места заземления ЭСУД.

УСТРОЙСТВО ЭЛЕКТРОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

ЭСУД — это электронная система управления двигателем. Так же, как существуют много разновидностей двигателей, также и существуют разные виды ЭСУД, устанавливаемые на все виды современных автомобилей серийного производства.

Читайте также:  Устройство ТНВД КАМАЗ ЕВРО

Принцип работы ЭСУД

Электронная система управления ДВС, он же компьютер принимает и считывает показатели с различных датчиков мотора и «говорит» исполнительным узлам и механизмам, что делать при таких полученных данных.

Цель существования ЭСУД — это постоянный подбор оптимального режима работы двигателя при котором создается оптимальная норма расхода топлива и выбросы выхлопных газов будут соответствовать требованиям современным стандартам экологов.

Разберем ЭСУД ВАЗ инжекторных модификаций

На российские автомобили ВАЗ устанавливаются электронные системы управления фирм Bosch, General Motors, отечественного производителя СУД.

Иностранного производства ЭСУД не ремонтируются, они не взаимозаменяемы и не ремонтопригодны. В российских ЭСУД можно заменить внутренние детали.

Классификация контроллеров управления мотором

На машины ВАЗ устанавливают следующие типы и виды контроллеров:

  • Январь 5 (Россия);
  • М 1.5.4 (Bosch);
  • МР 7.0 (Bosch).

Эти виды контроллеров не взаимозаменяемы. Есть система с нейтрализатором, есть без. Для системы без нейтрализатора подходит М 1.5.4, но он не подойдет для системы с нейтрализатором.

Контроллер МР 7.0 для системы ЕВРО-2 не подходит для автомобиля с двигателем ЕВРО-3. Контроллер МР 7.0 для системы ЕВРО-3 можно установить для авто ЕВРО-2 только после перепрошивки программного обеспечения контроллера.

Системы впрыска делятся на:

  • фазированные;
  • не фазированные.

В не фазированных системах впрыск топлива происходит или одновременно всеми форсунками, или парами.

В фазированных системах впрыск топлива происходит форсунками последовательно.

Нормы токсичности

После создания транспортной техники, начали появляться нормы по защите окружающей среды. Стандарты по количествам выбросов выхлопных газов получили название ЕВРО-0, -1, -2, -3, -4, -5.

Автомобили с большой долей выбросов вредных веществ, то есть класса ЕВРО-0, не содержат в своей конструкции нейтрализаторы, системы улавливания паров бензина, датчиков кислорода (О2).

По внешнему виду конструкции двигателя можно отличить автомобиль с ДВС ЕВРО 3 от ЕВРО 2. В конструкции машины ЕВРО-3 устанавливаются два датчика кислорода в выпускную систему. В конструкции ЕВРО-2 такой датчик один. Также отличаются по наличию датчика неровной дороги и внешней форме адсорбера.

Термины по теме ЭСУД

Контроллер — основа электронной системы управления. Считывает данные с датчиков о режиме работы ДВС. Производит сложные вычисления и управляет исполнительными узлами и деталями.

ДМРВ — это датчик массового расхода воздуха, который преобразует значение воздуха, который поступил в рабочие камеры цилиндров в электрических сигнал.

Датчик скорости — занимается преобразованием значения скорости движения автомобиля в электросигнал.

Датчик кислорода — преобразует значение концентрации кислорода в отработанных газах после нейтрализатора в электрический сигнал.

Датчик кислорода управляющий — преобразует значение кислорода в отработанных газах до нейтрализатора в электрический сигнал.

Датчик неровной дороги — занимается преобразованием значения вибрации кузова в электроимпульс.

Датчик фаз — передает информацию контроллеру в момент нахождения поршня в верхней мертвой точке (ВМТ) на такте сжатия.

Датчик температуры ОЖ — преобразует температуру антифриза, тосола, воды в электрический импульс.

Датчик положения коленчатого вала двигателя — преобразует угловое положение коленвала в электрический импульс.

Датчик положения дроссельной заслонки — преобразует значение угла закрытия дроссельной заслонки в элетросигнал.

Датчик детонации — преобразует значение механических шумов в электросигнал.

Модуль зажигания — занимается накапливанием энергии для воспламенения смеси в камере сгорания цилиндров ДВС и держит высокое напряжения на электродах свечей зажигания.

Форсунка — занимается подачей топлива в определенных пропорциях.

Регулятор давления топлива (РДТ) — держит постоянное давление в подающей магистрали топлива.

Адсорбер — элемент, который улавливает пары бензина.

Модуль бензонасоса — держит избыточное давление в топливной магистрали.

Клапан продувки адсорбера — обеспечивает улавливание и продувку паров бензина.

Топливный фильтр — фильтр тонкой очистки занимается улавливанием механических примесей топлива.

Нейтрализатор — элемент системы впрыска для уменьшения токсичности. Вредные вещества нейтрализуются и превращаются в АЗОТ, ВОДУ и ДВУОКИСЬ УГЛЕРОДА.

Диагностическая лампа — относится к элементам бортовой диагностики, занимается информированием водителя о неполадках ЭСУД.

Диагностический разъем — служи для подключения оборудования диагностики авто через ноутбук, планшет или телефон.

Регулятор холостого хода — поддерживает холостой ход в оптимальном режиме, регулируя подачу воздуха в двигатель на холостом ходу.

Видео

В этом видео разбирается, что такое ЭСУД, инжектор это или нет, и т.д.

Управление двигателем

Изобретение относится к машиностроению, а именно к двигателестроению. Технический результат заключается в возможности снижения неравномерности нагрузки для разных цилиндров многоцилиндрового поршневого двигателя внутреннего сгорания с принудительным воспламенением и распределенным впрыскиванием топлива. Согласно изобретению, регулировка нагрузки на двигатель осуществляется общей на все цилиндры дроссельной заслонкой. При этом индивидуальные впускные трубопроводы отдельных цилиндров оснащены дополнительными дроссельными заслонками, обеспечивающими коррекцию подачи воздуха на основании информации от датчиков свободного кислорода, установленных в индивидуальных выпускных трубопроводах отдельных цилиндров. Регулировка угла опережения зажигания осуществляется индивидуально для каждого цилиндра с помощью датчика детонации.

Описание

Системой управления двигателем называется электронная система управления, которая обеспечивает работу двух и более систем двигателя. Система является одним из основных электронных компонентов электрооборудования автомобиля.

Генератором развития систем управления двигателем в мире является немецкая фирма Bosch. Технический прогресс в области электроники, жесткие нормы экологической безопасности обусловливают неуклонный рост числа подконтрольных систем двигателя.

Свою историю система управления двигателем ведет от объединенной системы впрыска и зажигания. Современная система управления двигателем объединяет значительно больше систем и устройств. Помимо традиционных систем впрыска и зажигания под управлением электронной системы находятся: топливная система, система впуска, выпускная система, система охлаждения, система рециркуляции отработавших газов, система улавливания паров бензина, вакуумный усилитель тормозов.

Термином «система управления двигателем» обычно называют систему управления бензиновым двигателем. В дизельном двигателе аналогичная система называется система управления дизелем.

Система управления двигателем включает входные датчики, электронный блок управления и исполнительные устройства систем двигателя.

Входные датчики измеряют конкретные параметры работы двигателя и преобразуют их в электрические сигналы. Информация, получаемая от датчиков, является основой управления двигателем. Количество и номенклатура датчиков определяется видом и модификацией системы управления. Например, в системе управления двигателем Motronic-MED применяются следующие входные датчики: давления топлива в контуре низкого давления, давления топлива, частоты вращения коленчатого вала, Холла, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Каждый из датчиков используется в интересах одной или нескольких систем двигателя.

Электронный блок управления двигателем принимает информацию от датчиков и в соответствии с заложенным программным обеспечением формирует управляющие сигналы на исполнительные устройства систем двигателя. В своей работе электронный блок управления взаимодействует с блоками управления автоматической коробкой передач, системой ABS (ESP), электроусилителя руля, подушками безопасности и др.

Исполнительные устройства входят в состав конкретных систем двигателя и обеспечивают их работу. Исполнительными устройствами топливной системы являются электрический топливный насос и перепускной клапан. В системе впрыска управляемыми элементами являются форсунки и клапан регулирования давления. Работа системы впуска управляется с помощью привода дроссельной заслонки и привода впускных заслонок.

Катушки зажигания являются исполнительными устройствами системы зажигания. Система охлаждения современного автомобиля также имеет ряд компонентов, управляемых электроникой: термостат (на некоторых моделях двигателей), реле дополнительного насоса охлаждающей жидкости, блок управления вентилятора радиатора, реле охлаждения двигателя после остановки.

В выпускной системе осуществляется принудительный подогрев кислородных датчиков и датчика оксидов азота, необходимый для их эффективной работы. Исполнительными устройствами системы рециркуляции отработавших газов являются электромагнитный клапан управления подачей вторичного воздуха, а также электродвигатель насоса вторичного воздуха. Управление системой улавливания паров бензина производится с помощью электромагнитного клапан продувки адсорбера.

Принцип работы системы управления двигателем основан на комплексном управлении величиной крутящего момента двигателя. Другими словами, система управления двигателем приводит величину крутящего момента в соответствия с конкретным режимом работы двигателя. Система различает следующие режимы работы двигателя:

  • запуск;
  • прогрев;
  • холостой ход;
  • движение;
  • переключение передач;
  • торможение;
  • работа системы кондиционирования.

Изменение величины крутящего момента производиться двумя способами — путем регулирования наполнения цилиндров воздухом и регулированием угла опережения зажигания.

Возможные неисправности блока управления ECU

Для того чтобы поставленный новый блок управления устранил причины появляющихся ошибок, необходимо достоверно знать в чем заключается поломка старого ЭБУ.

Электронные модули управления наиболее часто выходят из строя по причине перегрузки напряжения (короткое замыкание в цепи) или из-за постоянного перегрева оборудования, тряски, ударов, коррозии. Не устраняя причины короткого замыкания, владелец автомобиля рискует получить в скором времени полностью непригодный к эксплуатации бортовой компьютер.

Из внешних факторов, которые также могут влиять на работу ЭБУ, стоит обращать внимание на возможное воздействие воды на приборы. Вода может попадать вовнутрь прибора, стимулируя развитие коррозийных процессов и становясь причиной возникновения коротких замыканий. Восстановление модулей управления, на которые оказывала воздействие вода, практически невозможно. Единственно возможный вариант в этом случае — замена ЭБУ. А вот механические повреждения, микротрещины в плате можно устранить силами специалистов.

Основные признаки неисправности ECU

Нет сигнала управления на форсунки, зажигания, бензонасоса, регулятора холостого хода, а также другими исполнительными механизмами. Нет реакции на лямбда — регулировку, ДПДЗ, датчиков температуры, и т.п.

Автодиагностика не определяет (не выходит на связь). Физические повреждения (сгоревшие электронные компоненты, проводники на печатной плате).

Причины возникновения поломки ECU

Вмешательство в электрику автомобиля неквалифицированными «специалистами» при установке сигнализаций или проведении ремонтных работ.

  1. «Переполюсовка» при присоединении аккумуляторной батареи.
  2. «Прикуривание» от автомобиля с запущенным мотором.
  3. Снятие клеммы с аккумулятора на запущенном двигателе.
  4. Запуск стартера с отключенной силовой шиной;
  5. Попадание сваркой при выполнении сварочных работ при ремонте на датчики или электропроводку автомобиля.
  6. Обрыв или замыкание проводки.
  7. Попадание воды в ECU.

Пробой высоковольтного участка системы зажигания (пробой катушки или высоковольтных проводов на массу) вызывает перегрузку, и как следствие перегорание силовых ключей в блоке управления.

Вид неисправности узлов блока управления практически всегда позволяет предоставить советы по проверке узлов и систем двигателя которые могли вызвать данные поломки, так как между ними существует прямая взаимосвязь. Это АРХИВАЖНЫЙ момент, так как, если блок управления сгорел из-за проблем в электропроводке или исполнительном устройстве, простая замена ECU в 90% случаев может ничего не принести, кроме еще нескольких перегоревших блоков ECU, которые уже обратно никто не примет.

Ссылка на основную публикацию